The $r$-Matrix and an Algebraic-Geometric Solution of the AKNS System
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 488-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an approach to finite-dimensional integrable systems with nonlinear evolution equations from the standpoint of the $r$-matrix and an algebraic-geometric solution, illustrating the method with the well-known AKNS equation. We present the $r$-matrix of the constrained AKNS flow and obtain the algebraic-geometric solution of the AKNS equation.
@article{TMF_2001_127_3_a14,
     author = {Qiao Zhijun},
     title = {The $r${-Matrix} and an {Algebraic-Geometric} {Solution} of the {AKNS} {System}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {488--496},
     year = {2001},
     volume = {127},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a14/}
}
TY  - JOUR
AU  - Qiao Zhijun
TI  - The $r$-Matrix and an Algebraic-Geometric Solution of the AKNS System
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 488
EP  - 496
VL  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a14/
LA  - ru
ID  - TMF_2001_127_3_a14
ER  - 
%0 Journal Article
%A Qiao Zhijun
%T The $r$-Matrix and an Algebraic-Geometric Solution of the AKNS System
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 488-496
%V 127
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a14/
%G ru
%F TMF_2001_127_3_a14
Qiao Zhijun. The $r$-Matrix and an Algebraic-Geometric Solution of the AKNS System. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 488-496. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a14/

[1] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Phys. Rev. Lett., 31 (1973), 125 | DOI | MR | Zbl

[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249 | DOI | MR | Zbl

[3] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi rasseyaniya, Mir, M., 1987 | MR

[4] P. D. Lax, Commun. Pure Appl. Math., 28 (1975), 141 | DOI | MR | Zbl

[5] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, DAN SSSR, 229 (1976), 15 | MR | Zbl

[6] V. E. Zakharov, A. B. Shabat, ZhETF, 61:1 (1972), 118

[7] C. W. Cao, Sci. China A (Chinese Edition), 32 (1989), 701; Sci. Sin. A (English Edition), 33 (1990), 528 | MR | Zbl

[8] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[9] C. W. Cao, Acta Math. Sin. New Series, 7 (1991), 216 | DOI | Zbl

[10] Z. J. Qiao, Generalized Lax algebra, $r$-matrix, and algebraic-geometric solution for the integrable system, Doctoral dissertation, Fudan University, China, 1997; Preprint 10246/950011

[11] Z. J. Qiao, Chin. Sci. Bull., 44 (1999), 114 | DOI | MR | Zbl

[12] R. G. Zhou, The finite-dimensional integrable systems related to the soliton equations, Doctoral dissertation, Fudan University, China, 1997

[13] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1984 | MR

[14] J. S. Zhang, The generating functional method for finite-dimensional integrable systems, Doctoral dissertation, Zhengzhou University, China, 1998

[15] D. L. Du, Integrability of the nonlinearized eigenvalue problems under the Lie–Poisson structure, Doctoral dissertation, Zhengzhou University, China, 1998 | MR

[16] P. A. Deift, A. R. Its, X. Zhou, Ann. Math., 146 (1997), 149 | DOI | MR | Zbl