Group Foliation Approach to the Complex Monge–Ampére Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 465-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the group foliation method to find noninvariant solutions of the complex Monge–Ampére equation $(\textrm{CMA}_2)$. We use the infinite symmetry subgroup of the $\textrm{CMA}_2$ to foliate the solution space into orbits of solutions with respect to this group and correspondingly split the $\textrm{CMA}_2$ into an automorphic system and a resolvent system. We propose a new approach to group foliation based on the commutator algebra of operators of invariant differentiation. This algebra together with Jacobi identities provides the commutator representation of the resolvent system. For solving the resolvent system, we propose symmetry reduction, which allows deriving reduced resolving equations.
@article{TMF_2001_127_3_a12,
     author = {Y. Nutku and M. B. Sheftel},
     title = {Group {Foliation} {Approach} to the {Complex} {Monge{\textendash}Amp\'ere} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--474},
     year = {2001},
     volume = {127},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a12/}
}
TY  - JOUR
AU  - Y. Nutku
AU  - M. B. Sheftel
TI  - Group Foliation Approach to the Complex Monge–Ampére Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 465
EP  - 474
VL  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a12/
LA  - ru
ID  - TMF_2001_127_3_a12
ER  - 
%0 Journal Article
%A Y. Nutku
%A M. B. Sheftel
%T Group Foliation Approach to the Complex Monge–Ampére Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 465-474
%V 127
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a12/
%G ru
%F TMF_2001_127_3_a12
Y. Nutku; M. B. Sheftel. Group Foliation Approach to the Complex Monge–Ampére Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 465-474. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a12/

[1] S. Lie, Gesammelte Abhandlungen, V. 1–6, B. G. Teubner, Leipzig, 1922–1937 | MR | Zbl

[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] E. Vessiot, Acta Math., 28 (1904), 307 | DOI | MR | Zbl

[4] C. P. Boyer, P. Winternitz, J. Math. Phys., 30 (1989), 1081 | DOI | MR | Zbl

[5] Y. Nutku, Phys. Lett. A, 268 (2000), 293 | DOI | MR | Zbl