Nonlinear Renormalization Group Flow and Approximate Solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 444-456

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a self-consistent renormalization group prescription for the scalar field theory. The formalism coincides with the local potential approximation in the sharp-cutoff limit but differs from the smooth cutoff. We explore the dependence of the critical exponent $\nu$ on the smoothness parameter and the field of expansion. We use an optimization scheme based on the minimum sensitivity principle to ensure the most rapid convergence of $\nu$ with the polynomial truncation level.
@article{TMF_2001_127_3_a10,
     author = {Sen-Ben Liao},
     title = {Nonlinear {Renormalization} {Group} {Flow} and {Approximate} {Solutions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {444--456},
     publisher = {mathdoc},
     volume = {127},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a10/}
}
TY  - JOUR
AU  - Sen-Ben Liao
TI  - Nonlinear Renormalization Group Flow and Approximate Solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 444
EP  - 456
VL  - 127
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a10/
LA  - ru
ID  - TMF_2001_127_3_a10
ER  - 
%0 Journal Article
%A Sen-Ben Liao
%T Nonlinear Renormalization Group Flow and Approximate Solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 444-456
%V 127
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a10/
%G ru
%F TMF_2001_127_3_a10
Sen-Ben Liao. Nonlinear Renormalization Group Flow and Approximate Solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 444-456. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a10/