Nonlinear Renormalization Group Flow and Approximate Solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 444-456 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a self-consistent renormalization group prescription for the scalar field theory. The formalism coincides with the local potential approximation in the sharp-cutoff limit but differs from the smooth cutoff. We explore the dependence of the critical exponent $\nu$ on the smoothness parameter and the field of expansion. We use an optimization scheme based on the minimum sensitivity principle to ensure the most rapid convergence of $\nu$ with the polynomial truncation level.
@article{TMF_2001_127_3_a10,
     author = {Sen-Ben Liao},
     title = {Nonlinear {Renormalization} {Group} {Flow} and {Approximate} {Solutions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {444--456},
     year = {2001},
     volume = {127},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a10/}
}
TY  - JOUR
AU  - Sen-Ben Liao
TI  - Nonlinear Renormalization Group Flow and Approximate Solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 444
EP  - 456
VL  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a10/
LA  - ru
ID  - TMF_2001_127_3_a10
ER  - 
%0 Journal Article
%A Sen-Ben Liao
%T Nonlinear Renormalization Group Flow and Approximate Solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 444-456
%V 127
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a10/
%G ru
%F TMF_2001_127_3_a10
Sen-Ben Liao. Nonlinear Renormalization Group Flow and Approximate Solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 444-456. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a10/

[1] K. Wilson, Phys. Rev. B, 4 (1971), 3174 ; K. Wilson, J. Kogut, Phys. Rep. C, 12 (1975), 75 | DOI | Zbl | DOI

[2] F. J. Wegner, A. Houghton, Phys. Rev. A, 8 (1972), 401 | DOI

[3] J. Polchinski, Nucl. Phys. B, 231 (1984), 269 | DOI

[4] T. R. Morris, Phys. Lett. B, 334 (1994), 355 ; 329, 241 | DOI | DOI | MR | Zbl

[5] N. Tetradis, C. Wetterich, Nucl. Phys. B, 422 (1994), 541 ; B. Bergerhoff, Phys. Lett. B, 437 (1998), 381 | DOI | DOI

[6] C. Bagnuls, C. Bervillier, Exact renormalization group equations. An introductory review, E-print hep-th/0002034 | MR

[7] J. Berges, N. Tetradis, C. Wetterich, Non-perturbative renormalization flow in quantum field theory and statistical physics, E-print hep-ph/0005122 | MR

[8] T. R. Morris, Int. J. Mod. Phys. A, 9 (1994), 2411 ; Nucl. Phys. B, 509 (1998), 637 | DOI | MR | Zbl | DOI

[9] T. R. Morris, Nucl. Phys. B, 495 (1997), 477 | DOI

[10] S.-B. Liao, J. Polonyi, Ann. Phys., 222 (1993), 122 ; Phys. Rev. D, 51 (1995), 4474 | DOI | DOI

[11] J. F. Nicoll, T. S. Chang, H. E. Stanley, Phys. Rev. Lett., 32 (1974), 1446 ; 33, 540 | DOI | MR | DOI | Zbl

[12] S.-B. Liao, M. Strickland, Nucl. Phys. B, 497 (1997), 611 ; 532 (1998), 753 ; Phys. Rev. D, 52 (1995), 3653 | DOI | DOI | DOI

[13] A. Hasenfratz, P. Hasenfratz, Nucl. Phys. B, 270 (1986), 687 | DOI

[14] A. Margaritis, G. Odor, A. Patkos, Z. Phys. C, 39 (1988), 109 | DOI

[15] K. Aoki et al., Prog. Theor. Phys., 95 (1996), 409 ; 99 (1998), 451 | DOI | DOI | MR

[16] S.-B. Liao, J. Polonyi, M. Strickland, Nucl. Phys. B, 567 (2000), 493 | DOI | MR | Zbl

[17] S.-B. Liao, C.-Y. Lin, M. Strickland, Self-consistent renormalization group flow, E-print hep-th/0010100

[18] D. Litim, Phys. Lett. B, 486 (2000), 92 | DOI

[19] S.-B. Liao, J. Polonyi, D. P. Xu, Phys. Rev. D, 51 (1995), 748 | DOI

[20] J. Alexandre, J. Polonyi, Renormalization group for the internal space, E-print hep-th/9902144

[21] V. Branchina, Phys. Rev. D, 62 (2000), 065010 ; A. Bonanno, V. Branchina, H. Mohrbach, D. Zappala, Phys. Rev. D, 60 (1999), 065009 ; A. Bonanno, D. Zappala, Phys. Rev. D, 57 (1998), 7383 | DOI | DOI | MR | DOI

[22] M. Strickland, Dynamical mass generation and confinement at finite temperature, Ph. D. Thesis, Duke University, North Carolina, USA, 1997; Non-perturbative QED and QCD at finite temperature, E-print hep-ph/9809592

[23] K. Aoki, K. Takagi, H. Terao, M. Tomoyose, Non-ladder extended renormalization group analysis of the dynamical symmetry breaking, E-print hep-th/0002038

[24] O. Bohr, B.-J. Schaefer, J. Wambach, Renormalization group flow equations and the phase transition in $O(N)$-models, E-print hep-ph/0007098

[25] J. Alexandre, V. Branchina, J. Polonyi, Phys. Rev. D, 58 (1998), 016002 | DOI

[26] G. Papp et al., Phys. Rev. D, 61 (2000), 096002 | DOI

[27] S.-B. Liao, Phys. Rev. D, 53 (1996), 2020 ; 56 (1997), 5008 | DOI | DOI