Yangians and $\mathcal W$-Algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 356-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a connection between $\mathcal W$-algebras and Yangians in the case of $gl(N)$ algebras, as well as for twisted Yangians and super-Yangians. We illustrate this connection, which allows constructing an $R$-matrix for the $\mathcal W$-algebras and classifying their finite-dimensional irreducible representations, in the framework of the nonlinear Schrödinger equation in $1+1$ dimensions.
@article{TMF_2001_127_3_a1,
     author = {C. Briot and E. Ragoucy},
     title = {Yangians and $\mathcal W${-Algebras}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {356--366},
     year = {2001},
     volume = {127},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a1/}
}
TY  - JOUR
AU  - C. Briot
AU  - E. Ragoucy
TI  - Yangians and $\mathcal W$-Algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 356
EP  - 366
VL  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a1/
LA  - ru
ID  - TMF_2001_127_3_a1
ER  - 
%0 Journal Article
%A C. Briot
%A E. Ragoucy
%T Yangians and $\mathcal W$-Algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 356-366
%V 127
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a1/
%G ru
%F TMF_2001_127_3_a1
C. Briot; E. Ragoucy. Yangians and $\mathcal W$-Algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 356-366. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a1/

[1] V. G. Drinfeld, DAN SSSR, 283 (1985), 1060 | MR | Zbl

[2] A. A. Kirillov, N. Yu. Reshetikhin, Lett. Math. Phys., 12 (1986), 199 | DOI | MR | Zbl

[3] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, Lett. Math. Phys., 5 (1981), 393 ; В. О. Тарасов, ТМФ, 63:2 (1985), 175 ; V. Chari, A. Pressley, Enseign. Math., 36 (1990), 267 | DOI | MR | Zbl | MR | MR | Zbl

[4] A. B. Zamolodchikov, TMF, 65:3 (1985), 347 | MR

[5] L. Feher, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui, A. Wipf, Phys. Rep., 222 (1992), 1 | DOI | MR

[6] P. Bouwknegt, K. Schoutens, Phys. Rep., 223 (1993), 183 | DOI | MR

[7] J. De Boer, F. Harmsze, T. Tjin, Phys. Rep., 272 (1996), 139 | DOI | MR

[8] L. Frappat, E. Ragoucy, P. Sorba, Commun. Math. Phys., 157 (1993), 499 | DOI | MR | Zbl

[9] E. Ragoucy, P. Sorba, Commun. Math. Phys., 203 (1999), 551 | DOI | MR | Zbl

[10] C. Briot, E. Ragoucy, RTT presentation of finite $\mathcal W$-algebras, Preprint LAPTH-792/00 | MR

[11] R. Rosales, Stud. Appl. Math., 59 (1978), 117 ; Е. К. Склянин, Л. Д. Фаддеев, ДАН СССР, 243:6 (1978), 1430 ; Е. К. Склянин, ДАН СССР, 244:6 (1979), 1337 ; H. B. Tacker, D. Wilkinson, Phys. Rev. D, 19 (1979), 3660 ; D. B. Creamer, H. B. Tacker, D. Wilkinson, Phys. Rev. D, 21 (1980), 1523 ; J. Honerkamp, P. Weber, A. Wiesler, Nucl. Phys. B, 152 (1979), 266 ; B. Davies, J. Phys. A, 14 (1981), 2631 | DOI | MR | Zbl | MR | DOI | MR | DOI | MR | DOI | DOI | MR | Zbl

[12] A. B. Zamolodchikov, A. B. Zamolodchikov, Ann. Phys., 120 (1979), 253 ; L. D. Faddeev, Quantum completely integrable models of field theory, Preprint LOMI P-2-79; Sov. Sci. Rev. C, 1 (1980), 107 | DOI | MR | Zbl

[13] M. Mintchev, E. Ragoucy, P. Sorba, Ph. Zaugg, J. Phys. A, 32 (1999), 5885 ; E-print hep-th/9905105 | DOI | MR | Zbl

[14] L. Frappat, E. Ragoucy, P. Sorba, Nucl. Phys. B, 404 (1993), 805 | DOI | MR | Zbl

[15] E. Ragoucy, Folded $\mathcal W$-algebras as truncations of twisted Yangians, Preprint LAPTH-824/00

[16] G. I. Olshanski\v i, “Twisted Yangians and infinite-dimensional classical Lie algebras”, Quantum Groups, Proc. of Workshop (Euler International Mathematical Institute, Leningrad, 1990), Lecture Notes in Math., 1510, ed. P. P. Kulish, Springer, Berlin, 1992, 104 | DOI | MR

[17] A. Molev, J. Math. Phys., 39 (1998), 5559 ; E-print q-alg/9711022 | DOI | MR | Zbl

[18] A. Molev, M. Nazarov, G. Olshanskii, UMN, 51:2 (1996), 27 ; E-print hep-th/9409025 | DOI | MR | Zbl

[19] M. Nazarov, Lett. Math. Phys., 21 (1991), 123 | DOI | MR | Zbl

[20] R. B. Zhang, Representations of super-Yangian, ; R. B. Zhang, Lett. Math. Phys., 37 (1996), 419 ; E-print hep-th/9411243E-print hep-th/9507029 | MR | DOI | MR | Zbl

[21] C. Briot, E. Ragoucy, $\mathcal W$-superalgebras and super-Yangians, in preparation

[22] C. Briot, E. Ragoucy, Twisted super-Yangians, in preparation