The Theory of Quantum Fermi-Liquid Solutions with a Vector Order Parameter
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 317-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the thermodynamic theory and derive the hydrodynamic equations for a solution of Fermi superfluids with a vector order parameter. The thermodynamic quantities related to spontaneous breaking of phase symmetries and spin rotations are represented in terms of the order-parameter operator. We predict a new entrainment effect related to the mutual influence of magnetic and orbital degrees of freedom. We find the spectra of collective excitations and discuss the distinctions between the states under consideration and those with scalar and vector order parameters.
@article{TMF_2001_127_2_a5,
     author = {M. Yu. Kovalevsky and A. A. Rozhkov},
     title = {The {Theory} of {Quantum} {Fermi-Liquid} {Solutions} with a {Vector} {Order} {Parameter}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {317--335},
     year = {2001},
     volume = {127},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a5/}
}
TY  - JOUR
AU  - M. Yu. Kovalevsky
AU  - A. A. Rozhkov
TI  - The Theory of Quantum Fermi-Liquid Solutions with a Vector Order Parameter
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 317
EP  - 335
VL  - 127
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a5/
LA  - ru
ID  - TMF_2001_127_2_a5
ER  - 
%0 Journal Article
%A M. Yu. Kovalevsky
%A A. A. Rozhkov
%T The Theory of Quantum Fermi-Liquid Solutions with a Vector Order Parameter
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 317-335
%V 127
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a5/
%G ru
%F TMF_2001_127_2_a5
M. Yu. Kovalevsky; A. A. Rozhkov. The Theory of Quantum Fermi-Liquid Solutions with a Vector Order Parameter. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 317-335. http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a5/

[1] I. M. Khalatnikov, Teoriya sverkhtekuchesti, Nauka, M., 1971

[2] N. N. Bogolyubov, Prepr. OIYaI R-1395, Dubna, 1962

[3] G. E. Volovik, Exotic Properties of Superfluid $^3\mathrm{He}$, World Scientific, Singapore, 1992

[4] D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3, Ed. Taylor Francis, London, 1990

[5] A. J. Leggett, Rev. Mod. Phys., 47 (1975), 331 | DOI

[6] R. Combescot, J. Phys. C, 14 (1981), 1619 | DOI

[7] K. Maki, P. Kumar, Phys. Rev. B, 16 (1977), 182 | DOI

[8] I. M. Khalatnikov (red.), Sverkhtekuchest geliya-3, Sb. statei, Mir, M., 1977

[9] A. F. Andreev, E. P. Bashkin, ZhETF, 69 (1975), 319

[10] M. Yu. Kovalevskii, N. M. Lavrinenko, FNT, 8 (1982), 341

[11] N. N. Bogolyubov, M. Yu. Kovalevskii, A. M. Kurbatov, S. V. Peletminskii, A. N. Tarasov, UFN, 159 (1989), 585 | DOI | MR

[12] L. D. Landau, Sb. trudov, T. 1, Nauka, M., 1969, S. 128; 252 | MR

[13] V. V. Krasilnikov, S. V. Peletminskii, A. A. Rozhkov, A. A. Yatsenko, EChAYa, 19 (1988), 1440 | MR

[14] M. Yu. Kovalevskii, A. A. Rozhkov, TMF, 113 (1997), 313 | DOI

[15] V. V. Krasilnikov, A. A. Rozhkov, A. A. Yatsenko, FNT, 16 (1990), 1368

[16] M. Yu. Kovalevskii, A. A. Rozhkov, Physica A, 216 (1995), 169 | DOI

[17] Yu. M. Poluektov, V. V. Krasilnikov, FNT, 15 (1989), 1251

[18] A. I. Akhiezer, S. V. Peletminskii, A. A. Yatsenko, FNT, 20 (1994), 650

[19] M. Baldo, U. Lombardo, P. Schuck, Phys. Rev. C, 52 (1995), 975 | DOI

[20] L. Amundsen, E. Ostgaard, Nucl. Phys. A, 442 (1985), 163 | DOI

[21] Th. Alm, G. Roepke, A. Sedrakian, Nucl. Phys. A, 594 (1995), 355 | DOI

[22] V. P. Mineev, UFN, 139 (1983), 303 | DOI

[23] E. Kartan, Geometriya grupp Li i simmetricheskie prostranstva, IL, M., 1949

[24] N. N. Bogolyubov, Kvazisrednie v zadachakh statisticheskoi mekhaniki, Prep. OIYaI D-781, Dubna, 1961