Wick Power Series Converging to Nonlocal Fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 268-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the infinite series in Wick powers of a generalized free field that are convergent under smoothing with analytic test functions and realize a nonlocal extension of the Borchers equivalence classes. The nonlocal fields to which the Wick power series converge are proved to be asymptotically commuting. This property serves as a natural generalization of the relative locality of the Wick polynomials. The proposed proof is based on exploiting the analytic properties of the vacuum expectation values in the x space and applying the Cauchy–Poincaré theorem.
@article{TMF_2001_127_2_a2,
     author = {A. G. Smirnov and M. A. Soloviev},
     title = {Wick {Power} {Series} {Converging} to {Nonlocal} {Fields}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {268--283},
     year = {2001},
     volume = {127},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/}
}
TY  - JOUR
AU  - A. G. Smirnov
AU  - M. A. Soloviev
TI  - Wick Power Series Converging to Nonlocal Fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 268
EP  - 283
VL  - 127
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/
LA  - ru
ID  - TMF_2001_127_2_a2
ER  - 
%0 Journal Article
%A A. G. Smirnov
%A M. A. Soloviev
%T Wick Power Series Converging to Nonlocal Fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 268-283
%V 127
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/
%G ru
%F TMF_2001_127_2_a2
A. G. Smirnov; M. A. Soloviev. Wick Power Series Converging to Nonlocal Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 268-283. http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/

[1] A. G. Smirnov, M. A. Solovev, TMF, 123 (2000), 355 | DOI | Zbl

[2] A. G. Smirnov, M. A. Solovev, TMF, 125 (2000), 57 | DOI | Zbl

[3] A. Rieckers, Int. J. Theor. Phys., 4 (1971), 55 | DOI | MR

[4] M. A. Solovev, TMF, 121 (1999), 139 | DOI | Zbl

[5] W. Lücke, J. Phys. A, 7 (1974), 2258 | DOI | MR

[6] M. A. Soloviev, J. Math. Phys., 39 (1998), 2635 | DOI | MR | Zbl

[7] E. Brüning, J. Math. Phys., 25 (1984), 3064 | DOI | MR | Zbl

[8] A. Kapustin, On the universality class of little string theories, E-print hep-th/9912044 | MR

[9] S. B. Giddings, Phys. Rev. D, 61 (2000), 106008 | DOI | MR

[10] J. W. Moffat, Quantum field theory solution to the gange hierarchy and cosmological constant problems, E-print hep-ph/0003171

[11] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[12] R. Iost, Obschaya teoriya kvantovannykh polei, Mir, M., 1967 | MR

[13] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. T. 2. Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | Zbl

[14] M. A. Soloviev, “Beyond the theory of hyperfunctions”, Developments in Mathematics: The Moscow School, eds. V. Arnold, M. Monastyrsky, Chapman and Hall, London, 1993, 131 | MR | Zbl

[15] S. Nagamachi, N. Mugibayashi, J. Math. Phys., 27 (1986), 832 | DOI | MR

[16] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[17] L. Hörmander, Colloque en L'Honneur de Laurent Schwartz, Astérisque, 131, 1985, 89 | Zbl