Wick Power Series Converging to Nonlocal Fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 268-283

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the infinite series in Wick powers of a generalized free field that are convergent under smoothing with analytic test functions and realize a nonlocal extension of the Borchers equivalence classes. The nonlocal fields to which the Wick power series converge are proved to be asymptotically commuting. This property serves as a natural generalization of the relative locality of the Wick polynomials. The proposed proof is based on exploiting the analytic properties of the vacuum expectation values in the x space and applying the Cauchy–Poincaré theorem.
@article{TMF_2001_127_2_a2,
     author = {A. G. Smirnov and M. A. Soloviev},
     title = {Wick {Power} {Series} {Converging} to {Nonlocal} {Fields}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {268--283},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/}
}
TY  - JOUR
AU  - A. G. Smirnov
AU  - M. A. Soloviev
TI  - Wick Power Series Converging to Nonlocal Fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 268
EP  - 283
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/
LA  - ru
ID  - TMF_2001_127_2_a2
ER  - 
%0 Journal Article
%A A. G. Smirnov
%A M. A. Soloviev
%T Wick Power Series Converging to Nonlocal Fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 268-283
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/
%G ru
%F TMF_2001_127_2_a2
A. G. Smirnov; M. A. Soloviev. Wick Power Series Converging to Nonlocal Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 268-283. http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/