Wick Power Series Converging to Nonlocal Fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 268-283
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the infinite series in Wick powers of a generalized free field that are convergent under smoothing with analytic test functions and realize a nonlocal extension of the Borchers equivalence classes. The nonlocal fields to which the Wick power series converge are proved to be asymptotically commuting. This property serves as a natural generalization of the relative locality of the Wick polynomials. The proposed proof is based on exploiting the analytic properties of the vacuum expectation values in the x space and applying the Cauchy–Poincaré theorem.
@article{TMF_2001_127_2_a2,
author = {A. G. Smirnov and M. A. Soloviev},
title = {Wick {Power} {Series} {Converging} to {Nonlocal} {Fields}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {268--283},
publisher = {mathdoc},
volume = {127},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/}
}
A. G. Smirnov; M. A. Soloviev. Wick Power Series Converging to Nonlocal Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 268-283. http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a2/