General Form of the $*$-Product on the Grassmann Algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 253-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the general form of the noncommutative associative product (the $*$-product) on the Grassmann algebra; the $*$-product is treated as a deformation of the usual pointwise product. We show that up to a similarity transformation, there exists only one such product. We discuss the relation of the algebra $\mathcal F$ (the algebra of the elements of the Grassmann algebra with the $*$-product as a product) to the Clifford algebra.
@article{TMF_2001_127_2_a1,
     author = {I. V. Tyutin},
     title = {General {Form} of the $*${-Product} on the {Grassmann} {Algebra}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {253--267},
     year = {2001},
     volume = {127},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a1/}
}
TY  - JOUR
AU  - I. V. Tyutin
TI  - General Form of the $*$-Product on the Grassmann Algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 253
EP  - 267
VL  - 127
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a1/
LA  - ru
ID  - TMF_2001_127_2_a1
ER  - 
%0 Journal Article
%A I. V. Tyutin
%T General Form of the $*$-Product on the Grassmann Algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 253-267
%V 127
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a1/
%G ru
%F TMF_2001_127_2_a1
I. V. Tyutin. General Form of the $*$-Product on the Grassmann Algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 253-267. http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a1/

[1] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[2] V. Flato, D. Sternheimer, Lett. Math. Phys., 22 (1991), 155 | DOI | MR | Zbl

[3] P. Bonneau, V. Flato, G. Pinczon, Lett. Math. Phys., 25 (1992), 75 | DOI | MR | Zbl

[4] N. Nekrasov, Trieste lectures on solitons in noncommutative gauge theories, E-print hep-th/0011095 | MR

[5] A. Schwarz, Gauge theories on noncommutative spaces, E-print hep-th/0011261 | MR

[6] B. Fedosov, Deformation Quantization and Index Theory, Akademie, Berlin, 1996 | MR

[7] M. Kontsevich, Deformation quantization of Poisson manifolds, I, E-print q-alg/9709040 | MR

[8] M. Grigoriev, S. Lyakhovich, Fedosov deformation quantization as BRST theory, E-print hep-th/0003114 | MR

[9] B. Fedosov, J. Diff. Geom., 40 (1994), 213 | DOI | MR | Zbl

[10] H. Groenewold, Physica, 12 (1946), 405 | DOI | MR | Zbl

[11] F. A. Berezin, UFN, 132 (1980), 497 | DOI | MR

[12] I. A. Batalin, E. S. Fradkin, Riv. Nuovo Cim., 9 (1986), 1 | DOI | MR

[13] E. Fradkin, V. Linetsky, Mod. Phys. Lett. A, 6 (1991), 217 | DOI | MR

[14] E. Gozzi, M. Reuter, Mod. Phys. Lett. A, 8 (1993), 1433 | DOI | MR | Zbl

[15] I. A. Batalin, I. V. Tyutin, J. Math. Phys., 34 (1993), 369 | DOI | MR | Zbl