General Form of the $*$-Product on the Grassmann Algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 253-267
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the general form of the noncommutative associative product (the $*$-product) on the Grassmann algebra; the $*$-product is treated as a deformation of the usual pointwise product. We show that up to a similarity transformation, there exists only one such product. We discuss the relation of the algebra $\mathcal F$ (the algebra of the elements of the Grassmann algebra with the $*$-product as a product) to the Clifford algebra.
@article{TMF_2001_127_2_a1,
author = {I. V. Tyutin},
title = {General {Form} of the $*${-Product} on the {Grassmann} {Algebra}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {253--267},
publisher = {mathdoc},
volume = {127},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a1/}
}
I. V. Tyutin. General Form of the $*$-Product on the Grassmann Algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 253-267. http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a1/