Matrix Models: Geometry of Moduli Spaces and Exact Solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 179-252

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the connection between characteristics of moduli spaces of Riemann surfaces with marked points and matrix models. The Kontsevich matrix model describes intersection indices on continuous moduli spaces, and the Kontsevich–Penner matrix model describes intersection indices on discretized moduli spaces. Analyzing the constraint algebras satisfied by various generalized Kontsevich matrix models, we derive time transformations that establish exact relations between different models appearing in mathematical physics. We solve the Hermitian one-matrix model using the moment technique in the genus expansion and construct a recursive procedure for solving this model in the double scaling limit.
@article{TMF_2001_127_2_a0,
     author = {L. O. Chekhov},
     title = {Matrix {Models:} {Geometry} of {Moduli} {Spaces} and {Exact} {Solutions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--252},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a0/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - Matrix Models: Geometry of Moduli Spaces and Exact Solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 179
EP  - 252
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a0/
LA  - ru
ID  - TMF_2001_127_2_a0
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T Matrix Models: Geometry of Moduli Spaces and Exact Solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 179-252
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a0/
%G ru
%F TMF_2001_127_2_a0
L. O. Chekhov. Matrix Models: Geometry of Moduli Spaces and Exact Solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 2, pp. 179-252. http://geodesic.mathdoc.fr/item/TMF_2001_127_2_a0/