Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: I.
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 143-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spin-spin correlation function of the two-dimensional Ising model with nearest-neighbor interaction is calculated on a finite lattice with periodic boundary conditions. The representations, which are analogous to the form-factor representation, are obtained for the ferromagnetic and paramagnetic domains of the interaction parameter. We discuss the effects of the finiteness of the system. We investigate the asymptotic dependence of the corresponding quantities on the lattice size.
@article{TMF_2001_127_1_a9,
     author = {A. I. Bugrij},
     title = {Correlation {Function} of the {Two-Dimensional} {Ising} {Model} on a {Finite} {Lattice:} {I.}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {143--167},
     year = {2001},
     volume = {127},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a9/}
}
TY  - JOUR
AU  - A. I. Bugrij
TI  - Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: I.
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 143
EP  - 167
VL  - 127
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a9/
LA  - ru
ID  - TMF_2001_127_1_a9
ER  - 
%0 Journal Article
%A A. I. Bugrij
%T Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: I.
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 143-167
%V 127
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a9/
%G ru
%F TMF_2001_127_1_a9
A. I. Bugrij. Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: I.. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 143-167. http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a9/

[1] E. W. Montroll, R. A. Potts, J. C. Ward, J. Math. Phys., 4 (1963), 308 | DOI | MR

[2] B. M. McCoy, “The connection between statistical mechanics and quantum field theory”, Statistical Mechanics and Field Theory, eds. V. V. Barhanov, C. J. Burden, World Scientific, Singapore, 1995, 26

[3] T. T. Wu, B. M. McCoy, C. A. Tracy, E. Barouch, Phys. Rev. B, 13 (1976), 316 | DOI | MR

[4] C. R. Nappi, Nuovo Cimento A, 44 (1978), 392 | DOI

[5] J. Palmer, C. A. Tracy, Adv. Appl. Math., 2 (1981), 329 | DOI | MR | Zbl

[6] B. Berg, M. Karowski, P. Weisz, Phys. Rev. D, 19 (1979), 2477 | DOI

[7] A. B. Zamolodchikov, Al. B. Zamolodchikov, Ann. Phys., 120 (1979), 253 | DOI | MR

[8] F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Adv. Series in Math. Phys., 14, World Scientific, Singapore, 1992 | DOI | MR

[9] S. Sachdev, Nucl. Phys. B, 464 (1996), 576 ; E-print cond-mat/9509147 | DOI | MR | Zbl | MR

[10] A. G. Izergin, N. A. Kitanin, N. A. Slavnov, Zap. nauchn. sem. POMI, 224, 1995, 178

[11] A. Leclair, F. Lesage, S. Sachdev, H. Saleur, Nucl. Phys. B, 482 (1996), 579 | DOI | MR | Zbl

[12] F. A. Smirnov, Quasi-classical study of form factors in finite volume, , 1998 E-print hep-th/9802132 | MR

[13] A. Leclair, G. Mussardo, Nucl. Phys. B, 552 (1999), 624 | DOI | MR | Zbl

[14] H. Saleur, Nucl. Phys. B, 567 (2000), 602 | DOI | MR | Zbl

[15] S. Lukyanov, Finite temperature expectation values of local fields in sinh-Gordon model, , 2000 E-print hep-th/0005027 | MR

[16] B. M. McCoy, T. T. Wu, The Two-Dimensional Ising Model, Harvard University Press, Cambridge, 1973

[17] V. N. Plechko, TMF, 64:1 (1985), 150 | MR

[18] E. A. Bugrii, TMF, 109:3 (1996), 441 | DOI | MR | Zbl

[19] A. I. Bugrii, V. N. Shadura, ZhETF, 109:3 (1996), 1024 | MR

[20] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962 | MR