Metric Properties of Bogoliubov Trajectories in Statistical Equilibrium Theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 125-142
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate some properties of the Bogoliubov measure that appear in statistical equilibrium theory for quantum systems and establish the nondifferentiability of the Bogoliubov trajectories in the corresponding function space. We prove a theorem on the quadratic variation of trajectories and study the properties implied by this theorem for the scale transformations. We construct some examples of semigroups related to the Bogoliubov measure. Independent increments are found for this measure. We consider the relation between the Bogoliubov measure and parabolic partial differential equations.
@article{TMF_2001_127_1_a8,
author = {D. P. Sankovich},
title = {Metric {Properties} of {Bogoliubov} {Trajectories} in {Statistical} {Equilibrium} {Theory}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {125--142},
publisher = {mathdoc},
volume = {127},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a8/}
}
TY - JOUR AU - D. P. Sankovich TI - Metric Properties of Bogoliubov Trajectories in Statistical Equilibrium Theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 125 EP - 142 VL - 127 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a8/ LA - ru ID - TMF_2001_127_1_a8 ER -
D. P. Sankovich. Metric Properties of Bogoliubov Trajectories in Statistical Equilibrium Theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 125-142. http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a8/