Geometric-Dynamic Approach to Billiard Systems: I. Projective Involution of a Billiard, Direct and Inverse Problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 110-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest a geometric-dynamic approach to billiards as a special kind of reversible dynamic system and establish their relation to projective transformations (involutions) in the framework of this approach. We state the direct and inverse problems for billiards and derive equations determining the solutions of these problems in general form. Some simplest billiard involutions are calculated. We establish functional relations between the involution of a billiard, the equation for its boundary, and the field of normals to the boundary. We show how the involution is related to the curvature of the billiard boundary.
@article{TMF_2001_127_1_a7,
     author = {S. V. Naydenov and V. V. Yanovskii},
     title = {Geometric-Dynamic {Approach} to {Billiard} {Systems:} {I.~Projective} {Involution} of a {Billiard,} {Direct} and {Inverse} {Problems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {110--124},
     year = {2001},
     volume = {127},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a7/}
}
TY  - JOUR
AU  - S. V. Naydenov
AU  - V. V. Yanovskii
TI  - Geometric-Dynamic Approach to Billiard Systems: I. Projective Involution of a Billiard, Direct and Inverse Problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 110
EP  - 124
VL  - 127
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a7/
LA  - ru
ID  - TMF_2001_127_1_a7
ER  - 
%0 Journal Article
%A S. V. Naydenov
%A V. V. Yanovskii
%T Geometric-Dynamic Approach to Billiard Systems: I. Projective Involution of a Billiard, Direct and Inverse Problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 110-124
%V 127
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a7/
%G ru
%F TMF_2001_127_1_a7
S. V. Naydenov; V. V. Yanovskii. Geometric-Dynamic Approach to Billiard Systems: I. Projective Involution of a Billiard, Direct and Inverse Problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 110-124. http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a7/

[1] Dzh. Birkgof, Dinamicheskie sistemy, Gostekhizdat, M., 1941

[2] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, Izd-vo AN SSSR, M., 1950

[3] Ya. G. Sinai, DAN SSSR, 153:6 (1963), 1261 ; УМН, 25:2 (1970), 141 | MR | MR | Zbl

[4] L. A. Bunimovich, Matem. sb., 95:1 (1974), 49

[5] T. Guhr, A. Muller-Groeling, H. A. Weidenmuller, Phys. Rep., 299 (1998), 1 | DOI | MR

[6] Ya. G. Sinai (red.), Dinamicheskie sistemy – 2, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985

[7] L. Bunimovich, G. Casati, I. Guarneri, Phys. Rev. Lett., 77 (1996), 2941 | DOI

[8] V. F. Lazutkin, Vypuklyi bilyard i sobstvennye funktsii operatora Laplasa, LGU, L., 1981 | MR

[9] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti, Nauka, M., 1988 | MR

[10] S. Tabachnikov, UMN, 48:6 (1993), 75 | MR | Zbl

[11] V. I. Arnol`d, “Reversible systems”, Nonliner and Turbulent Processes in Physics, V. 3, ed. R. Z. Sagdeev, Harwood, Chur, 1984, 1161 ; V. I. Arnold, M. B. Sevryuk, “Oscillations and bifurcations in reversible systems”, Nonlinear Phenomena in Plasma Physics and Hydrodynamics, Mir, M., 1986, 31 | MR | MR

[12] M. B. Sevryuk, Reversible Systems, Lect. Notes in Math., 1211, Springer, Berlin, 1986 | DOI | MR | Zbl

[13] J. A. G. Roberts, G. R. W. Qwispel, Phys. Rep., 216 (1992), 1 | DOI | MR

[14] S. V. Naidenov, V. V. Yanovskii, Funct. Materials, 7:4(2) (2000), 743

[15] N. V. Efimov, Vysshaya geometriya, Fizmatgiz, M., 1961 | MR