Difference Operators on Two-Dimensional Regular Lattices
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 34-46
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the direct and inverse spectral problems for two classes of difference operators. We present systems of ordinary differential equations describing isospectral deformations of these operators.
@article{TMF_2001_127_1_a2,
     author = {A. A. Oblomkov},
     title = {Difference {Operators} on {Two-Dimensional} {Regular} {Lattices}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {34--46},
     year = {2001},
     volume = {127},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a2/}
}
TY  - JOUR
AU  - A. A. Oblomkov
TI  - Difference Operators on Two-Dimensional Regular Lattices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 34
EP  - 46
VL  - 127
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a2/
LA  - ru
ID  - TMF_2001_127_1_a2
ER  - 
%0 Journal Article
%A A. A. Oblomkov
%T Difference Operators on Two-Dimensional Regular Lattices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 34-46
%V 127
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a2/
%G ru
%F TMF_2001_127_1_a2
A. A. Oblomkov. Difference Operators on Two-Dimensional Regular Lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 1, pp. 34-46. http://geodesic.mathdoc.fr/item/TMF_2001_127_1_a2/

[1] A. B. Dubrovin, I. M. Krichever, S. P. Novikov, DAN SSSR, 229:1 (1976), 15 | MR | Zbl

[2] S. P. Novikov, A. P. Veselov, Phisica D, 18 (1986), 267 | DOI | MR | Zbl

[3] A. P. Veselov, S. P. Novikov, DAN SSSR, 279:4 (1984), 784 | MR | Zbl

[4] S. P. Novikov, A. P. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, Geometry, and Topology: On Crossroad, AMS Transl. Ser. 2, 179, eds. V. M. Buchstaber et al., AMS, Providence, RI, 1997, 109 | MR

[5] I. M. Krichever, DAN SSSR, 285:1 (1985), 31 | MR | Zbl

[6] A. P. Veselov, I. M. Krichever, S. P. Novikov, “Two-dimensional periodic Schrödinger operators and Prym's $\theta$-functions”, Geometry of Today. Giornate di Geometria, Int. Conference (Rome, June 4–11, 1984), Progress in Math., 60, eds. E. Arbarello, C. Procesi, E. Strickland, Birkhäuser, Boston, 1985, 283 | MR

[7] S. P. Novikov, UMN, 52:1 (1997), 225 | DOI | MR | Zbl

[8] S. P. Novikov, I. A. Dynnikov, UMN, 52:5 (1997), 175 | DOI | MR | Zbl

[9] A. G. Khovanskii, Funkts. analiz i ego prilozh., 12:1 (1978), 51 | MR

[10] S. V. Manakov, UMN, 32:6 (1977), 198