Some Properties of Eigenfunctions of the Schrödinger Operator in a Magnetic Field
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 443-454
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the behavior of eigenfunctions corresponding to a positive point spectrum of the Schrödinger operator with magnetic and electric potentials.
@article{TMF_2001_126_3_a5,
author = {M. B. Gubaidullin and Kh. Kh. Murtazin},
title = {Some {Properties} of {Eigenfunctions} of the {Schr\"odinger} {Operator} in a {Magnetic} {Field}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {443--454},
year = {2001},
volume = {126},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a5/}
}
TY - JOUR AU - M. B. Gubaidullin AU - Kh. Kh. Murtazin TI - Some Properties of Eigenfunctions of the Schrödinger Operator in a Magnetic Field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 443 EP - 454 VL - 126 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a5/ LA - ru ID - TMF_2001_126_3_a5 ER -
M. B. Gubaidullin; Kh. Kh. Murtazin. Some Properties of Eigenfunctions of the Schrödinger Operator in a Magnetic Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 443-454. http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a5/
[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR | Zbl
[2] Kh. Kh. Murtazin, V. A. Sadovnichii, Spektralnyi analiz mnogochastichnogo operatora Shredingera, Izd-vo MGU, M., 1988
[3] Kh. Tsikon, R. Frze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami v kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR
[4] F. Stummel, Math. Ann., 132 (1956), 150–176 | DOI | MR | Zbl