Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 409-426 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Higher-order asymptotic expansions for renormalization constants and critical exponents of the $O(n)$-symmetric $\phi^4$ theory are found based on the instanton approach in the minimal subtraction scheme for the $(4-\epsilon)$-dimensional regularization. The exactly known expansion terms differ substantially from their asymptotic values. We find expressions that improve the asymptotic expansions for unknown expansion terms of the renormalization constants.
@article{TMF_2001_126_3_a3,
     author = {M. V. Komarova and M. Yu. Nalimov},
     title = {Asymptotic {Behavior} of {Renormalization} {Constants} in {Higher} {Orders} of the {Perturbation} {Expansion} for the $(4?\epsilon)${-Dimensionally} {Regularized} $O(n)${-Symmetric} $\phi^4$ {Theory}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {409--426},
     year = {2001},
     volume = {126},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a3/}
}
TY  - JOUR
AU  - M. V. Komarova
AU  - M. Yu. Nalimov
TI  - Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 409
EP  - 426
VL  - 126
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a3/
LA  - ru
ID  - TMF_2001_126_3_a3
ER  - 
%0 Journal Article
%A M. V. Komarova
%A M. Yu. Nalimov
%T Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 409-426
%V 126
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a3/
%G ru
%F TMF_2001_126_3_a3
M. V. Komarova; M. Yu. Nalimov. Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 409-426. http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a3/

[1] L. N. Lipatov, ZhETF, 72 (1977), 411 | MR

[2] E. Brezin, J. C. Le Guillou, J. Zinn-Justin, Phys. Rev. D, 15 (1977), 1544 | DOI

[3] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford University Press, Oxford, 1989 | MR

[4] S. A. Antonenko, A. I. Sokolov, Phys. Rev. E, 51 (1995), 1894 | DOI

[5] V. I. Yukalov, S. Gluzman, Phys. Rev. E, 58 (1998), 1359 | DOI

[6] A. I. Mudrov, K. B. Varnashev, Phys. Rev. E, 58 (1998), 5371 | DOI

[7] H. Kleinert, Phys. Rev. D, 60 (1999), 085001 | DOI | MR

[8] J. C. Le Guillou, J. Zinn-Justin, Phys. Rev. B, 21 (1980), 3976 | DOI | MR | Zbl

[9] E. Brezin, G. Parisi, J. Stat. Phys., 19 (1978), 269 | DOI | MR

[10] A. N. Vasilev, Kvantovo-polevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, S.-P., 1998

[11] J. C. Le Guillou, J. Zinn-Justin, J. Physique Lett., 46 (1985), L137 | DOI

[12] A. J. McKane, D. J. Wallace, O. F. de Alcantara Bonfim, J. Phys. A, 17 (1984), 1861 | DOI | MR

[13] J. C. Le Guillou, J. Zinn-Justin, J. Physique, 50 (1989), 1365 | DOI

[14] Yu. A. Kubyshin, TMF, 57 (1983), 363 | MR

[15] H. Kleinert, J. Neu, V. Schulte-Frohlinde, K. G. Chetyrkin, S. A. Larin, Phys. Lett. B, 272 (1991), 39 ; 319 (1993), 545 | DOI | DOI | MR

[16] A. A. Vladimirov, TMF, 36 (1978), 271

[17] I. M. Suslov, ZhETF, 111 (1997), 220

[18] I. M. Suslov, ZhETF, 111 (1997), 1896

[19] V. G. Makhankov, Phys. Lett. A, 61 (1977), 431 | DOI

[20] G. t'Hooft, M. Veltman, Nucl. Phys. B, 44 (1972), 189 | DOI | MR

[21] I. M. Suslov, ZhETF, 106 (1994), 560