Invariant Form of the Generators of Semisimple Lie and Quantum Algebras in Their Arbitrary Finite-Dimensional Representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 370-392

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit form of the generators of quantum and ordinary semisimple algebras for an arbitrary finite-dimensional representation is found. The generators corresponding to the simple roots are obtained in terms of a solution of a system of matrix equations. The result is presented in the form of $(N_l\times N_l)$ matrices, where $N_l$ is the dimension of the corresponding representation determined by the invariant Weyl formula.
@article{TMF_2001_126_3_a1,
     author = {A. N. Leznov},
     title = {Invariant {Form} of the {Generators} of {Semisimple} {Lie} and {Quantum} {Algebras} in {Their} {Arbitrary} {Finite-Dimensional} {Representation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--392},
     publisher = {mathdoc},
     volume = {126},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a1/}
}
TY  - JOUR
AU  - A. N. Leznov
TI  - Invariant Form of the Generators of Semisimple Lie and Quantum Algebras in Their Arbitrary Finite-Dimensional Representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 370
EP  - 392
VL  - 126
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a1/
LA  - ru
ID  - TMF_2001_126_3_a1
ER  - 
%0 Journal Article
%A A. N. Leznov
%T Invariant Form of the Generators of Semisimple Lie and Quantum Algebras in Their Arbitrary Finite-Dimensional Representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 370-392
%V 126
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a1/
%G ru
%F TMF_2001_126_3_a1
A. N. Leznov. Invariant Form of the Generators of Semisimple Lie and Quantum Algebras in Their Arbitrary Finite-Dimensional Representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 370-392. http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a1/