Invariant Form of the Generators of Semisimple Lie and Quantum Algebras in Their Arbitrary Finite-Dimensional Representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 370-392
Cet article a éte moissonné depuis la source Math-Net.Ru
An explicit form of the generators of quantum and ordinary semisimple algebras for an arbitrary finite-dimensional representation is found. The generators corresponding to the simple roots are obtained in terms of a solution of a system of matrix equations. The result is presented in the form of $(N_l\times N_l)$ matrices, where $N_l$ is the dimension of the corresponding representation determined by the invariant Weyl formula.
@article{TMF_2001_126_3_a1,
author = {A. N. Leznov},
title = {Invariant {Form} of the {Generators} of {Semisimple} {Lie} and {Quantum} {Algebras} in {Their} {Arbitrary} {Finite-Dimensional} {Representation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {370--392},
year = {2001},
volume = {126},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a1/}
}
TY - JOUR AU - A. N. Leznov TI - Invariant Form of the Generators of Semisimple Lie and Quantum Algebras in Their Arbitrary Finite-Dimensional Representation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 370 EP - 392 VL - 126 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a1/ LA - ru ID - TMF_2001_126_3_a1 ER -
%0 Journal Article %A A. N. Leznov %T Invariant Form of the Generators of Semisimple Lie and Quantum Algebras in Their Arbitrary Finite-Dimensional Representation %J Teoretičeskaâ i matematičeskaâ fizika %D 2001 %P 370-392 %V 126 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a1/ %G ru %F TMF_2001_126_3_a1
A. N. Leznov. Invariant Form of the Generators of Semisimple Lie and Quantum Algebras in Their Arbitrary Finite-Dimensional Representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 370-392. http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a1/