How to Quantize the Antibracket
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 339-369

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that in contrast to $\mathfrak{po}(2n|m)$, its quotient modulo center, the Lie superalgebra $\mathfrak{h}(2n|m)$ of Hamiltonian vector fields with polynomial coefficients, has exceptional additional deformations for $(2n|m)=(2|2)$ and only for this superdimension. We relate this result to the complete description of deformations of the antibracket (also called the Schouten or Buttin bracket). It turns out that the space in which the deformed Lie algebra (result of quantizing the Poisson algebra) acts coincides with the simplest space in which the Lie algebra of commutation relations acts. This coincidence is not necessary for Lie superalgebras.
@article{TMF_2001_126_3_a0,
     author = {D. A. Leites and I. M. Shchepochkina},
     title = {How to {Quantize} the {Antibracket}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--369},
     publisher = {mathdoc},
     volume = {126},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a0/}
}
TY  - JOUR
AU  - D. A. Leites
AU  - I. M. Shchepochkina
TI  - How to Quantize the Antibracket
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 339
EP  - 369
VL  - 126
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a0/
LA  - ru
ID  - TMF_2001_126_3_a0
ER  - 
%0 Journal Article
%A D. A. Leites
%A I. M. Shchepochkina
%T How to Quantize the Antibracket
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 339-369
%V 126
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a0/
%G ru
%F TMF_2001_126_3_a0
D. A. Leites; I. M. Shchepochkina. How to Quantize the Antibracket. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 3, pp. 339-369. http://geodesic.mathdoc.fr/item/TMF_2001_126_3_a0/