Von Neumann algebra corresponding to one phase of the inhomogeneous Potts model on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 206-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the von Neumann algebra generated by the GNS construction associated with the extremal disordered phase of a class of inhomogeneous Potts models on a Cayley tree is a factor of type $\mathrm{III}_1$.
@article{TMF_2001_126_2_a2,
     author = {F. M. Mukhamedov and U. A. Rozikov},
     title = {Von {Neumann} algebra corresponding to one phase of the inhomogeneous {Potts} model on a {Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {206--213},
     year = {2001},
     volume = {126},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a2/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
AU  - U. A. Rozikov
TI  - Von Neumann algebra corresponding to one phase of the inhomogeneous Potts model on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 206
EP  - 213
VL  - 126
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a2/
LA  - ru
ID  - TMF_2001_126_2_a2
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%A U. A. Rozikov
%T Von Neumann algebra corresponding to one phase of the inhomogeneous Potts model on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 206-213
%V 126
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a2/
%G ru
%F TMF_2001_126_2_a2
F. M. Mukhamedov; U. A. Rozikov. Von Neumann algebra corresponding to one phase of the inhomogeneous Potts model on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 206-213. http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a2/

[1] H. Araki, E. J. Woods, Publ. R I M S (Kyoto Univ.), 1968, no. 3, 51–130 | DOI | MR | Zbl

[2] I. F. Wilde, J. Funct. Anal., 15 (1974), 12–21 | DOI | MR | Zbl

[3] R. Powers, Ann. Math., 1967, no. 81, 138–171 | DOI | MR | Zbl

[4] F. M. Mukhamedov, TMF, 123:1 (2000), 83–88 | DOI | MR

[5] F. M. Mukhamedov, U. A. Rozikov, TMF, 124:3 (2000), 410–418 | DOI | MR | Zbl

[6] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[7] A. Connes, Ann. Ec. Norm. Sup., 6 (1973), 133–252 | DOI | MR | Zbl

[8] S. Stratila, Modular theory in operator algebras, Abacus Press, Bucuresti, 1981 | MR | Zbl

[9] A. G. Shukhov, Funkts. analiz i ego prilozh., 14:2 (1980), 95–96 | MR | Zbl

[10] O. Bratteli, D. Robinson, Operator algebras and Quantum Statistical Mechanics, V. II, Springer, Berlin, 1981 | MR | Zbl

[11] N. N. Ganikhodjaev, F. M. Mukhamedov, Methods of Funct. Anal. and Topol., 4:3 (1998), 33–38 | MR

[12] M. Takesaki, Reg. Conf. Ser. Math., 51, 1983, 1–107 | MR

[13] N. N. Ganikhodzhaev, DAN RUz., 1992, no. 6–7, 4–7

[14] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[15] N. N. Ganikhodzhaev, U. A. Rozikov, Matem. sb., 190:2 (1999), 31–42 | DOI | MR | Zbl