A Monte Carlo study of the dependence of the growth parameter for trees on the lattice dimension in the Eden model
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 325-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the Monte Carlo method to compute the number of trees with n edges in the Eden model on $d$-dimensional simple cubic lattices for $d=2,3,4,6,8,10$. We compare these numbers with the exact data derived by the enumeration method up to $n=12$ on the square lattice and up to $n=10$ on the cubic lattice. We find that for $d\geq3$, the computed values of the growth parameter for trees agree with the values that we derived earlier by the expansion in inverse powers of $2d-1$.
@article{TMF_2001_126_2_a12,
     author = {V. E. Zobov and M. A. Popov},
     title = {A {Monte} {Carlo} study of the dependence of the growth parameter for trees on the lattice dimension in the {Eden} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {325--336},
     year = {2001},
     volume = {126},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a12/}
}
TY  - JOUR
AU  - V. E. Zobov
AU  - M. A. Popov
TI  - A Monte Carlo study of the dependence of the growth parameter for trees on the lattice dimension in the Eden model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 325
EP  - 336
VL  - 126
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a12/
LA  - ru
ID  - TMF_2001_126_2_a12
ER  - 
%0 Journal Article
%A V. E. Zobov
%A M. A. Popov
%T A Monte Carlo study of the dependence of the growth parameter for trees on the lattice dimension in the Eden model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 325-336
%V 126
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a12/
%G ru
%F TMF_2001_126_2_a12
V. E. Zobov; M. A. Popov. A Monte Carlo study of the dependence of the growth parameter for trees on the lattice dimension in the Eden model. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 325-336. http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a12/

[1] M. E. Fisher, J. W. Essam, J. Math. Phys., 2 (1961), 609 | DOI | MR | Zbl

[2] D. S. Gaunt, M. F. Sykes, G. M. Torrie, S. G. Whittington, J. Phys. A, 15 (1982), 3209 | DOI | MR

[3] J. Vannimenus, B. Nickel, V. Hakim, Phys. Rev. B, 30 (1984), 391 | DOI

[4] R. Friedberg, Ann. Phys. (NY), 171 (1986), 321 | DOI

[5] V. E. Zobov, TMF, 77 (1988), 426 | MR

[6] V. E. Zobov, M. A. Popov, TMF, 112 (1997), 479 | DOI

[7] V. E. Zobov, M. A. Popov, J. Stat. Phys., 97 (1999), 793 | DOI | Zbl

[8] V. E. Zobov, TMF, 123 (2000), 116 | DOI | MR | Zbl

[9] A. B. Harris, Phys. Rev. B, 26 (1982), 337 | DOI | MR

[10] P. J. Peard, D. S. Gaunt, J. Phys. A, 28 (1995), 6109 | DOI | MR | Zbl

[11] S. Redner, J. Phys. A, 12 (1979), L239 | DOI

[12] Z. Alexandrowicz, Phys. Rev. Lett., 54 (1985), 1420 | DOI

[13] Z. Rácz, M. Plischke, Phys. Rev. A, 31 (1985), 985 | DOI

[14] M. Fisher, Priroda kriticheskogo sostoyaniya, Mir, M., 1968

[15] S. G. Whittington, G. M. Torrie, D. S. Gaunt, J. Phys. A, 16 (1983), 1695 | DOI | MR

[16] M. Tokuyama, K. Kawasaki, Phys. Lett. A, 100 (1984), 337 | DOI | MR

[17] C. Castellano, A. Gabrielli, M. Marsili et al., Phys. Rev. E, 58 (1998), R5209 | DOI