Schrödinger operator eigenvalue (resonance) on a zone boundary
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 196-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a Schrödinger operator with a periodic potential perturbed by a function periodic with respect to two variables and tending to zero with respect to the third variable, conditions are found under which a level (eigenvalue or resonance) falls on a zone boundary. The passage of the level through the boundary under variation of the perturbation magnitude is discussed.
@article{TMF_2001_126_2_a1,
     author = {Yu. P. Chuburin},
     title = {Schr\"odinger operator eigenvalue (resonance) on a zone boundary},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--205},
     year = {2001},
     volume = {126},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a1/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - Schrödinger operator eigenvalue (resonance) on a zone boundary
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 196
EP  - 205
VL  - 126
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a1/
LA  - ru
ID  - TMF_2001_126_2_a1
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T Schrödinger operator eigenvalue (resonance) on a zone boundary
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 196-205
%V 126
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a1/
%G ru
%F TMF_2001_126_2_a1
Yu. P. Chuburin. Schrödinger operator eigenvalue (resonance) on a zone boundary. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 196-205. http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a1/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[2] E. B. Davies, Proc. Cambridge Philos. Soc., 82 (1977), 327–334 | DOI | MR | Zbl

[3] Yu. P. Chuburin, TMF, 110:3 (1997), 443–453 | DOI | MR | Zbl

[4] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR

[5] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[6] A. A. Arsenev, TMF, 104:2 (1995), 214–232 | MR | Zbl

[7] G. V. Volf, Yu. P. Chuburin, L. A. Rubtsova, Poverkhnost, 1991, no. 10, 81–89 | MR

[8] M. Sh. Birman, Algebra i analiz, 8:1 (1996), 3–20 | MR

[9] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[10] Dzh. Teilor, Teoriya rasseyaniya. Kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1975