Lagrangian model of a massless particle on spacelike curves
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 179-195
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a model of a massless particle in a $D$-dimensional space with the Lagrangian proportional to the $N$th extrinsic curvature of the world line. We present the Hamiltonian formulation of the system and show that its trajectories are spacelike curves satisfying the conditions $k_{N+a}=k_{N-a}$ and $k_{2N}=0$, $a=1,\dots,N-1$, where $N\leq\bigl[(D-2)/2\bigr]$. The first $N$ curvatures take arbitrary values, which is a manifestation of $N+1$ gauge degrees of freedom; the corresponding gauge symmetry forms an algebra of the $W$ type. This model describes $D$-dimensional massless particles, whose helicity matrix has $N$ coinciding nonzero weights, while the remaining $\bigl[(D-2)/2\bigr]-N$ weights are zero. We show that the model can be extended to spaces with nonzero constant curvature. It is the only system with the Lagrangian dependent on the world-line extrinsic curvatures that yields irreducible representations of the Poincaré group.
@article{TMF_2001_126_2_a0,
author = {A. P. Nersesyan},
title = {Lagrangian model of a massless particle on spacelike curves},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--195},
year = {2001},
volume = {126},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a0/}
}
A. P. Nersesyan. Lagrangian model of a massless particle on spacelike curves. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 2, pp. 179-195. http://geodesic.mathdoc.fr/item/TMF_2001_126_2_a0/