Nonconformal Scalar Field in a Homogeneous Isotropic Space and the Hamiltonian Diagonalization Method
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 1, pp. 115-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We diagonalize the metric Hamiltonian and evaluate the energy spectrum of the corresponding quasiparticles for a scalar field coupled to a curvature in the case of an $N$-dimensional homogeneous isotropic space. The energy spectrum for the quasiparticles corresponding to the diagonal form of the canonical Hamiltonian is also evaluated. We construct a modified energy-momentum tensor with the following properties: for the conformal scalar field, it coincides with the metric energy-momentum tensor; the energies of the particles corresponding to its diagonal form are equal to the oscillator frequency; and the number of such particles created in a nonstationary metric is finite. We show that the Hamiltonian defined by the modified energy-momentum tensor can be obtained as the canonical Hamiltonian under a certain choice of variables.
@article{TMF_2001_126_1_a4,
     author = {Yu. V. Pavlov},
     title = {Nonconformal {Scalar} {Field} in a {Homogeneous} {Isotropic} {Space} and the {Hamiltonian} {Diagonalization} {Method}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--124},
     year = {2001},
     volume = {126},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a4/}
}
TY  - JOUR
AU  - Yu. V. Pavlov
TI  - Nonconformal Scalar Field in a Homogeneous Isotropic Space and the Hamiltonian Diagonalization Method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 115
EP  - 124
VL  - 126
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a4/
LA  - ru
ID  - TMF_2001_126_1_a4
ER  - 
%0 Journal Article
%A Yu. V. Pavlov
%T Nonconformal Scalar Field in a Homogeneous Isotropic Space and the Hamiltonian Diagonalization Method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 115-124
%V 126
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a4/
%G ru
%F TMF_2001_126_1_a4
Yu. V. Pavlov. Nonconformal Scalar Field in a Homogeneous Isotropic Space and the Hamiltonian Diagonalization Method. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 1, pp. 115-124. http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a4/

[1] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Vakuumnye kvantovye effekty v silnykh polyakh, Energoatomizdat, M., 1988

[2] N. Birrell, P. Devis, Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR

[3] V. B. Bezerra, V. M. Mostepanenko, C. Romero, Int. J. Mod. Phys. D, 7 (1998), 249 | DOI | MR | Zbl

[4] I. H. Redmount, Phys. Rev. D, 60 (1999), 104004 | DOI | MR

[5] J. Lindig, Phys. Rev. D, 59 (1999), 064011 | DOI | MR

[6] M. Bordag, J. Lindig, V. M. Mostepanenko, Yu. V. Pavlov, Int. J. Mod. Phys. D, 6 (1997), 449 | DOI | MR | Zbl

[7] M. Bordag, J. Lindig, V. M. Mostepanenko, Class. Q Grav., 15 (1998), 581 | DOI | MR | Zbl

[8] A. A. Grib, S. G. Mamaev, YaF, 10 (1969), 1276 | MR

[9] A. A. Grib, S. G. Mamaev, YaF, 14 (1971), 800

[10] L. Parker, Phys. Rev., 183 (1969), 1057 | DOI | Zbl

[11] S. A. Fulling, Gen. Relativ. Gravit., 10 (1979), 807 | DOI | MR | Zbl

[12] N. A. Chernikov, E. A. Tagirov, Ann. Inst. H. Poincaré A, 9 (1968), 109 | MR | Zbl

[13] M. Castagnino, R. Ferraro, Phys. Rev. D, 34 (1986), 497 | DOI | MR | Zbl

[14] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[15] S. G. Mamaev, V. M. Mostepanenko, V. A. Shelyuto, TMF, 63:1 (1985), 64 | MR