Multisoliton Solutions of the Matrix KdV Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 1, pp. 102-114
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider multisoliton solutions of the matrix KdV equation. We obtain the formulas for changing phases and amplitudes during the interaction of two solitons and prove that no multiparticle effects appear during the multisoliton interaction. We find the conditions ensuring the symmetry of the corresponding solutions of the matrix KdV equation if they are constructed by the matrix Darboux transformation applied to the Schrödinger operator with zero potential.
@article{TMF_2001_126_1_a3,
     author = {V. M. Goncharenko},
     title = {Multisoliton {Solutions} of the {Matrix} {KdV} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--114},
     year = {2001},
     volume = {126},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a3/}
}
TY  - JOUR
AU  - V. M. Goncharenko
TI  - Multisoliton Solutions of the Matrix KdV Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 102
EP  - 114
VL  - 126
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a3/
LA  - ru
ID  - TMF_2001_126_1_a3
ER  - 
%0 Journal Article
%A V. M. Goncharenko
%T Multisoliton Solutions of the Matrix KdV Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 102-114
%V 126
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a3/
%G ru
%F TMF_2001_126_1_a3
V. M. Goncharenko. Multisoliton Solutions of the Matrix KdV Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 1, pp. 102-114. http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a3/

[1] C. Gardner, J. Green, M. Kruskal, R. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI | Zbl

[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[3] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR

[4] P. D. Lax, Commun. Pure and Appl. Math., 21 (1968), 467 | DOI | MR | Zbl

[5] M. Wadati, T. Kamijo, Prog. Theor. Physics, 52 (1974), 397 | DOI | MR | Zbl

[6] F. Calogero, A. Degasperis, Nuovo Cimento, 39B:1 (1977), 1 | DOI | MR

[7] A. Degasperis, “Solitons, boomerons, trappons”, Nonlinear Evolutional Equations Solvable by Spectral Transform, Research Notes in Math., 26, ed. F. Calogero, Pitman Publishing, London, 1978, 97 | MR

[8] L. Martinez Alonso, E. Olmedilla, J. Math. Phys., 23:11 (1982), 2116 | DOI | MR | Zbl

[9] E. Olmedilla, Inverse Problem, 1 (1985), 219 | DOI | MR | Zbl

[10] I. M. Gelfand, V. S. Retakh, Funkts. analiz i ego prilozh., 25:2 (1991), 13 | MR | Zbl

[11] V. M. Goncharenko, UMN, 55:5 (2000), 175–176 | DOI | MR | Zbl

[12] V. M. Goncharenko, A. P. Veselov, J. Phys. A, 31 (1998), 5315 | DOI | MR | Zbl

[13] P. Etingof, I. Gelfand, V. Retakh, Math. Res. Lett., 4:2–3 (1997), 413 ; E-print q-alg/9701008 | DOI | MR | Zbl

[14] Z. S. Agranovich, V. A. Marchenko, Obratnaya zadacha teorii rasseyaniya, Izd-vo Kharkovskogo un-ta, Kharkov, 1960

[15] E. Olmedilla, L. Martinez Alonso, F. Guil, Nuovo Cimento B, 61:1 (1981), 49 | DOI | MR