@article{TMF_2001_126_1_a0,
author = {A. M. Semikhatov and I. Yu. Tipunin and B. L. Feigin},
title = {Semi-Infinite {Realization} of {Unitary} {Representations} of the $N=2$ {Algebra} and {Related} {Constructions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--62},
year = {2001},
volume = {126},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a0/}
}
TY - JOUR AU - A. M. Semikhatov AU - I. Yu. Tipunin AU - B. L. Feigin TI - Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 3 EP - 62 VL - 126 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a0/ LA - ru ID - TMF_2001_126_1_a0 ER -
%0 Journal Article %A A. M. Semikhatov %A I. Yu. Tipunin %A B. L. Feigin %T Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions %J Teoretičeskaâ i matematičeskaâ fizika %D 2001 %P 3-62 %V 126 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a0/ %G ru %F TMF_2001_126_1_a0
A. M. Semikhatov; I. Yu. Tipunin; B. L. Feigin. Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 1, pp. 3-62. http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a0/
[1] A. V. Stoyanovskii, B. L. Feigin, Funkts. analiz i ego prilozh., 28:1 (1994), 68 | MR | Zbl
[2] B. Feigin, T. Miwa, Extended vertex operator algebras and monomial bases, E-print hep-th/9804063 | MR
[3] P. Bouwknegt, A. W. W. Ludwig, K. Schoutens, Phys. Lett. B, 338 (1994), 448 ; ; Affine and Yangian symmetries in $SU(2)_1$ conformal field theory, ; Spinon basis for $\widehat{sl}(2)_k$ integrable highest weight modules and new character formulas, E-print hep-th/9406020E-print hep-th/9412199E-print hep-th/9504074 | DOI | MR
[4] P. Bouwknegt, A. W. W. Ludwig, K. Schoutens, Spinon basis for higher level $su(2)$ WZW models, E-print hep-th/9412108 | MR
[5] G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras. I: Principal subspace, E-print hep-th/9412054 | MR
[6] D. Uglov, Semi-infinite wedges and the conformal limit of the fermionic Calogero–Sutherland model with spin ${1}/{2}$, E-print hep-th/9601170 | MR
[7] J. Lepowsky, M. Primc, Contemp. Math., 46, 1985 | DOI | MR | Zbl
[8] P. Fendley, H. Saleur, N. Warner, Nucl. Phys. B, 430 (1994), 577 | DOI | MR | Zbl
[9] P. Fendley, A. W. W. Ludwig, H. Saleur, Exact conductance through point contacts in the $\nu=1/3$ fractional quantum Hall effect, E-print cond-mat/9408068
[10] Dzh. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR
[11] B. Gordon, Am. J. Math., 83 (1961), 393 | DOI | MR | Zbl
[12] G. E. Andrews, R. J. Baxter, P. J. Forrester, J. Stat. Phys., 35 (1984), 193 | DOI | MR | Zbl
[13] E. Date, M. Jimbo, T. Miwa, M. Okado, Phys. Rev. B, 35 (1987), 2105 | DOI
[14] G. E. Andrews, A. Berkovich, A trinomial analogue of Bailey's lemma and $N=2$ superconformal invariance, E-print q-alg/9702008 | MR
[15] S. O. Warnaar, Fermionic solution of the Andrews–Baxter–Forrester model. II: Proof of Melzer's polynomial identities, E-print hep-th/9508079 | MR
[16] A. Berkovich, B. M. McCoy, A. Schilling, $N=2$ supersymmetry and Bailey pairs, ; Physica A, 228 (1996), 33 E-print hep-th/9512182 | MR | DOI
[17] A. Berkovich, Fermionic counting of $\mathsf R\mathsf S\mathsf O\mathsf S$-states and Virasoro character formulae for the unitary minimal series $\mathsf M(\nu,\nu+1)$. Exact results, ; Nucl. Phys. B, 431 (1994), 315 E-print hep-th/9403073 | MR | DOI | Zbl
[18] A. Berkovich, B. M. McCoy, A. Schilling, S. O. Warnaar, Bailey flows and Bose–Fermi identities for the conformal coset models $\bigl(\text{A}^{(1)}_1\bigr)_N\times\bigl(\text{A}^{(1)}_1\bigr)_{N'}\big/ \bigl(\text{A}^{(1)}_1\bigr)_{N+N'}$, ; Nucl. Phys. B, 499 (1997), 621 E-print hep-th/9702026 | MR | DOI | Zbl
[19] O. Foda, Y.-H. Quano, Polynomial identities of the Rogers–Ramanujan type, ; Int. J. Mod. Phys. A, 12 (1997), 1651 ; E-print hep-th/9407191E-print hep-th/9408086 | MR | DOI | MR | Zbl
[20] S. O. Warnaar, The Andrews–Gordon identities and $q$-multinomial coefficients, ; Commun. Math. Phys., 184 (1997), 203 E-print q-alg/9601012 | MR | DOI | Zbl
[21] A. Meurman, M. Primc, Mem. Am. Math. Soc., no. 652, 1999 ; E-print math.QA/9806105 | MR | Zbl
[22] J. Lepowsky, R. L. Wilson, Proc. Nat. Acad. Sci. USA, 78 (1981), 7254 ; Adv. Math., 45 (1982), 21 ; Inv. Math., 77 (1984), 199 ; Inv. Math., 79 (1985), 417 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[23] A. Kuniba, T. Nakanishi, J. Suzuki, Mod. Phys. Lett. A, 8 (1993), 1649 ; E-print hep-th/9301018 | DOI | MR | Zbl
[24] R. Kedem, T. Klassen, B. McCoy, E. Melzer, Phys. Lett. B, 304 (1993), 263 ; ; Phys. Lett. B, 307 (1993), 68 ; ; S. Dasmahapatra, R. Kedem, T. Klassen, B. McCoy, E. Melzer, Int. J. Mod. Phys. B, 7 (1993), 3617 ; ; R. Kedem, B. McCoy, E. Melzer, “The sums of Rogers, Schur and Ramanujan and the Bose–Fermi correspondence in $(1+1)$-dimensional quantum field theory”, Recent Progress in Statistical Mechanics and Quantum Field Theory, eds. P. Bouwknegt et al., World Scientific, Singapore, 1995, 195 ; ; E. Melzer, Lett. Math. Phys., 31 (1994), 233 ; E-print hep-th/9211102E-print hep-th/9301046E-print hep-th/9303013E-print hep-th/9304056E-print hep-th/9312043 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR | MR | DOI | MR | Zbl
[25] W. Nahm, A. Recknagel, M. Terhoeven, Mod. Phys. Lett. A, 8 (1993), 1835 | DOI | MR | Zbl
[26] R. Kedem, B. McCoy, J. Stat. Phys., 71 (1993), 865 ; ; S. Dasmahapatra, R. Kedem, T. R. Klassen, B. McCoy, E. Melzer, J. Stat. Phys., 74 (1994), 239 ; ; A. Berkovich, B. McCoy, Continued fractions and fermionic representations for characters of $M(p,p')$ minimal models, E-print hep-th/9210129E-print hep-th/9304150E-print hep-th/9412030 | DOI | MR | Zbl | DOI | MR | Zbl | MR
[27] A. G. Bytsko, A. Fring, Anyonic interpretation of Virasoro characters and the thermodynamic Bethe ansatz, E-print hep-th/9711113 | MR
[28] J. Suzuki, J. Phys. A, 31 (1998), 6887 ; E-print cond-mat/9805242 | DOI | MR | Zbl
[29] B. Feigin, T. Nakanishi, H. Ooguri, Int. J. Mod. Phys. A. Suppl. 1A, 7 (1992), 217 | DOI | MR | Zbl
[30] B. Feigin, E. Frenkel, Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities, E-print hep-th/9301039 | MR
[31] E. Baver, D. Gepner, Fermionic sum representations for the Virasoro characters of the unitary superconformal minimal models, E-print hep-th/9502118 | MR
[32] A. V. Stoyanovskii, B. L. Feigin, Funkts. analiz i ego prilozh., 28:4 (1994), 42 | MR | Zbl
[33] D. Bernard, V. Pasquier, D. Serban, Nucl. Phys. B, 428 (1994), 612 ; E-print hep-th/9404050 | DOI | MR
[34] F. D. M. Haldane, Phys. Rev. Lett., 60 (1988), 635 | DOI | MR
[35] B. S. Shastry, Phys. Rev. Lett., 60 (1988), 639 | DOI
[36] D. Bernard, M. Gaudin, F. D. M. Haldane, V. Pasquier, J. Phys. A, 26 (1993), 5219 | DOI | MR | Zbl
[37] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard, V. Pasquier, Phys. Rev. Lett., 69 (1992), 2021 | DOI | MR | Zbl
[38] F. D. M. Haldane, Physics of the ideal Semion gas: spinons and quantum symmetries of the integrable Haldane–Shastry spin chain, E-print cond-mat/9401001
[39] V. G. Kač, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1990 | MR
[40] V. Kač, D. H. Peterson, Proc. Nat. Acad. Sci. USA, 78 (1981), 3308 | DOI | MR | Zbl
[41] A. Pressley, G. Segal, Loop Groups, Clarendon Press, Oxford, 1986 | MR | Zbl
[42] B. Feigin, S. Loktev, On generalized Kostka polynomials and quantum Verlinde rule, E-print math.QA/9812093
[43] O. Foda, T. Miwa, Corner transfer matrices and quantum affine algebras, E-print hep-th/9204068 | MR
[44] M. Idzumi, K. Iohara, M. Jimbo, T. Miwa, T. Nakashima, T. Tokihiro, Quantum affine symmetry in vertex models, E-print hep-th/9208066 | MR
[45] M. Jimbo, T. Miwa, Y. Ohta, Structure of the space of states in RSOS models, E-print hep-th/9208067 | MR
[46] M. Kashiwara, T. Miwa, J. U. H. Petersen, C. M. Yung, Perfect crystals and $q$-deformed Fock spaces, E-print q-alg/9603025 | MR
[47] M. Jimbo, H. Konno, S. Odake, Y. Pugai, J. Shiraishi, Free field construction for the ABF models in regime, II, E-print math.QA/0001071 | MR
[48] A. H. Bougourzi, Bosonization of quantum affine groups and its application to the higher spin Heisenberg model, E-print q-alg/9706015
[49] O. Foda, K. C. Misra, M. Okado, Demazure modules and vertex models: the $\widehat{s\ell}(2)$ case, E-print q-alg/9602018 | MR
[50] A. Kuniba, K. C. Misra, M. Okado, J. Uchiyama, Demazure modules and perfect crystals, E-print q-alg/9607011 | MR
[51] A. Kuniba, K. C. Misra, M. Okado, T. Takagi, J. Uchiyama, Characters of Demazure modules and solvable lattice models, ; J. Algebra, 208 (1998), 185 ; E-print q-alg/9707004E-print q-alg/9707014 | MR | DOI | MR | Zbl
[52] A. Schilling, S. O. Warnaar, Supernomial coefficients, polynomial identities and $q$-series, E-print q-alg/9701007 | MR
[53] M. Wakimoto, Fusion rules for $N=2$ superconformal modules, E-print hep-th/9807144
[54] B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, J. Math. Phys., 39 (1998), 3865 ; E-print hep-th/9701043 | DOI | MR | Zbl | MR
[55] B. L. Feigin, A. M. Semikhatov, V. A. Sirota, I. Yu. Tipunin, Nucl. Phys. B, 536 (1999), 617 | DOI | MR | Zbl
[56] A. Schwimmer, N. Seiberg, Phys. Lett. B, 184 (1987), 191 | DOI | MR
[57] W. Boucher, D. Friedan, A. Kent, Phys. Lett. B, 172 (1986), 316 | DOI | MR | Zbl
[58] Y. Matsuo, Progr. Theor. Phys., 77 (1987), 793 | DOI | MR
[59] F. Ravanini, S.-K. Yang, Phys. Lett. B, 195 (1987), 202 | DOI | MR
[60] V. G. Kač, M. Wakimoto, Proc. Nat. Acad. Sci. USA, 85 (1988), 4956 | DOI | MR | Zbl
[61] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl
[62] V. A. Fateev, A. B. Zamolodchikov, YaF, 43 (1986), 1031
[63] A. M. Semikhatov, Verma modules, extremal vectors, and singular vectors on the non-critical $N=2$ string worldsheet, E-print hep-th/9610084
[64] P. Bowcock, B. L. Feigin, A. M. Semikhatov, A. Taormina, $\widehat{sl}(2\,|\,1)$ and $\widehat{D}(2\,|\,1;\alpha)$ as vertex operator extensions of dual affine $s\ell(2)$ algebras, ; Commun. Math. Phys., 214 (2000), 495 E-print hep-th/9907171 | MR | DOI | Zbl