Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions
Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 1, pp. 3-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the examples of the $N=2$ super-Virasoro algebra and the affine $\widehat{s\ell}(2)$ algebra, we investigate the construction of unitary representations of infinite-dimensional algebras in terms of “collective excitations” over a filled Dirac sea of fermionic or bosonic operators satisfying a generalized exclusion principle and represented by semi-infinite forms in the modes of one of the generators. We develop the methods for investigating properties of semi-infinite spaces (polynomial realization of the dual space) and for constructing the appropriate algebra action on these spaces (a filtration by subspaces similar to Demazure modules). We also consider relations of the semi-infinite realizations to the Rogers–Ramanujan-type identities, to the expression of coinvariants through meromorphic functions on products of Riemann surfaces with a prescribed behavior on multiple diagonals, and to some combinatorial facts; we also consider the relation between modular functors and fusion rules for the $N=2$ and $\widehat{s\ell}(2)$ theories.
@article{TMF_2001_126_1_a0,
     author = {A. M. Semikhatov and I. Yu. Tipunin and B. L. Feigin},
     title = {Semi-Infinite {Realization} of {Unitary} {Representations} of the $N=2$ {Algebra} and {Related} {Constructions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--62},
     year = {2001},
     volume = {126},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a0/}
}
TY  - JOUR
AU  - A. M. Semikhatov
AU  - I. Yu. Tipunin
AU  - B. L. Feigin
TI  - Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 3
EP  - 62
VL  - 126
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a0/
LA  - ru
ID  - TMF_2001_126_1_a0
ER  - 
%0 Journal Article
%A A. M. Semikhatov
%A I. Yu. Tipunin
%A B. L. Feigin
%T Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 3-62
%V 126
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a0/
%G ru
%F TMF_2001_126_1_a0
A. M. Semikhatov; I. Yu. Tipunin; B. L. Feigin. Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions. Teoretičeskaâ i matematičeskaâ fizika, Tome 126 (2001) no. 1, pp. 3-62. http://geodesic.mathdoc.fr/item/TMF_2001_126_1_a0/

[1] A. V. Stoyanovskii, B. L. Feigin, Funkts. analiz i ego prilozh., 28:1 (1994), 68 | MR | Zbl

[2] B. Feigin, T. Miwa, Extended vertex operator algebras and monomial bases, E-print hep-th/9804063 | MR

[3] P. Bouwknegt, A. W. W. Ludwig, K. Schoutens, Phys. Lett. B, 338 (1994), 448 ; ; Affine and Yangian symmetries in $SU(2)_1$ conformal field theory, ; Spinon basis for $\widehat{sl}(2)_k$ integrable highest weight modules and new character formulas, E-print hep-th/9406020E-print hep-th/9412199E-print hep-th/9504074 | DOI | MR

[4] P. Bouwknegt, A. W. W. Ludwig, K. Schoutens, Spinon basis for higher level $su(2)$ WZW models, E-print hep-th/9412108 | MR

[5] G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras. I: Principal subspace, E-print hep-th/9412054 | MR

[6] D. Uglov, Semi-infinite wedges and the conformal limit of the fermionic Calogero–Sutherland model with spin ${1}/{2}$, E-print hep-th/9601170 | MR

[7] J. Lepowsky, M. Primc, Contemp. Math., 46, 1985 | DOI | MR | Zbl

[8] P. Fendley, H. Saleur, N. Warner, Nucl. Phys. B, 430 (1994), 577 | DOI | MR | Zbl

[9] P. Fendley, A. W. W. Ludwig, H. Saleur, Exact conductance through point contacts in the $\nu=1/3$ fractional quantum Hall effect, E-print cond-mat/9408068

[10] Dzh. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR

[11] B. Gordon, Am. J. Math., 83 (1961), 393 | DOI | MR | Zbl

[12] G. E. Andrews, R. J. Baxter, P. J. Forrester, J. Stat. Phys., 35 (1984), 193 | DOI | MR | Zbl

[13] E. Date, M. Jimbo, T. Miwa, M. Okado, Phys. Rev. B, 35 (1987), 2105 | DOI

[14] G. E. Andrews, A. Berkovich, A trinomial analogue of Bailey's lemma and $N=2$ superconformal invariance, E-print q-alg/9702008 | MR

[15] S. O. Warnaar, Fermionic solution of the Andrews–Baxter–Forrester model. II: Proof of Melzer's polynomial identities, E-print hep-th/9508079 | MR

[16] A. Berkovich, B. M. McCoy, A. Schilling, $N=2$ supersymmetry and Bailey pairs, ; Physica A, 228 (1996), 33 E-print hep-th/9512182 | MR | DOI

[17] A. Berkovich, Fermionic counting of $\mathsf R\mathsf S\mathsf O\mathsf S$-states and Virasoro character formulae for the unitary minimal series $\mathsf M(\nu,\nu+1)$. Exact results, ; Nucl. Phys. B, 431 (1994), 315 E-print hep-th/9403073 | MR | DOI | Zbl

[18] A. Berkovich, B. M. McCoy, A. Schilling, S. O. Warnaar, Bailey flows and Bose–Fermi identities for the conformal coset models $\bigl(\text{A}^{(1)}_1\bigr)_N\times\bigl(\text{A}^{(1)}_1\bigr)_{N'}\big/ \bigl(\text{A}^{(1)}_1\bigr)_{N+N'}$, ; Nucl. Phys. B, 499 (1997), 621 E-print hep-th/9702026 | MR | DOI | Zbl

[19] O. Foda, Y.-H. Quano, Polynomial identities of the Rogers–Ramanujan type, ; Int. J. Mod. Phys. A, 12 (1997), 1651 ; E-print hep-th/9407191E-print hep-th/9408086 | MR | DOI | MR | Zbl

[20] S. O. Warnaar, The Andrews–Gordon identities and $q$-multinomial coefficients, ; Commun. Math. Phys., 184 (1997), 203 E-print q-alg/9601012 | MR | DOI | Zbl

[21] A. Meurman, M. Primc, Mem. Am. Math. Soc., no. 652, 1999 ; E-print math.QA/9806105 | MR | Zbl

[22] J. Lepowsky, R. L. Wilson, Proc. Nat. Acad. Sci. USA, 78 (1981), 7254 ; Adv. Math., 45 (1982), 21 ; Inv. Math., 77 (1984), 199 ; Inv. Math., 79 (1985), 417 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[23] A. Kuniba, T. Nakanishi, J. Suzuki, Mod. Phys. Lett. A, 8 (1993), 1649 ; E-print hep-th/9301018 | DOI | MR | Zbl

[24] R. Kedem, T. Klassen, B. McCoy, E. Melzer, Phys. Lett. B, 304 (1993), 263 ; ; Phys. Lett. B, 307 (1993), 68 ; ; S. Dasmahapatra, R. Kedem, T. Klassen, B. McCoy, E. Melzer, Int. J. Mod. Phys. B, 7 (1993), 3617 ; ; R. Kedem, B. McCoy, E. Melzer, “The sums of Rogers, Schur and Ramanujan and the Bose–Fermi correspondence in $(1+1)$-dimensional quantum field theory”, Recent Progress in Statistical Mechanics and Quantum Field Theory, eds. P. Bouwknegt et al., World Scientific, Singapore, 1995, 195 ; ; E. Melzer, Lett. Math. Phys., 31 (1994), 233 ; E-print hep-th/9211102E-print hep-th/9301046E-print hep-th/9303013E-print hep-th/9304056E-print hep-th/9312043 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR | MR | DOI | MR | Zbl

[25] W. Nahm, A. Recknagel, M. Terhoeven, Mod. Phys. Lett. A, 8 (1993), 1835 | DOI | MR | Zbl

[26] R. Kedem, B. McCoy, J. Stat. Phys., 71 (1993), 865 ; ; S. Dasmahapatra, R. Kedem, T. R. Klassen, B. McCoy, E. Melzer, J. Stat. Phys., 74 (1994), 239 ; ; A. Berkovich, B. McCoy, Continued fractions and fermionic representations for characters of $M(p,p')$ minimal models, E-print hep-th/9210129E-print hep-th/9304150E-print hep-th/9412030 | DOI | MR | Zbl | DOI | MR | Zbl | MR

[27] A. G. Bytsko, A. Fring, Anyonic interpretation of Virasoro characters and the thermodynamic Bethe ansatz, E-print hep-th/9711113 | MR

[28] J. Suzuki, J. Phys. A, 31 (1998), 6887 ; E-print cond-mat/9805242 | DOI | MR | Zbl

[29] B. Feigin, T. Nakanishi, H. Ooguri, Int. J. Mod. Phys. A. Suppl. 1A, 7 (1992), 217 | DOI | MR | Zbl

[30] B. Feigin, E. Frenkel, Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities, E-print hep-th/9301039 | MR

[31] E. Baver, D. Gepner, Fermionic sum representations for the Virasoro characters of the unitary superconformal minimal models, E-print hep-th/9502118 | MR

[32] A. V. Stoyanovskii, B. L. Feigin, Funkts. analiz i ego prilozh., 28:4 (1994), 42 | MR | Zbl

[33] D. Bernard, V. Pasquier, D. Serban, Nucl. Phys. B, 428 (1994), 612 ; E-print hep-th/9404050 | DOI | MR

[34] F. D. M. Haldane, Phys. Rev. Lett., 60 (1988), 635 | DOI | MR

[35] B. S. Shastry, Phys. Rev. Lett., 60 (1988), 639 | DOI

[36] D. Bernard, M. Gaudin, F. D. M. Haldane, V. Pasquier, J. Phys. A, 26 (1993), 5219 | DOI | MR | Zbl

[37] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard, V. Pasquier, Phys. Rev. Lett., 69 (1992), 2021 | DOI | MR | Zbl

[38] F. D. M. Haldane, Physics of the ideal Semion gas: spinons and quantum symmetries of the integrable Haldane–Shastry spin chain, E-print cond-mat/9401001

[39] V. G. Kač, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1990 | MR

[40] V. Kač, D. H. Peterson, Proc. Nat. Acad. Sci. USA, 78 (1981), 3308 | DOI | MR | Zbl

[41] A. Pressley, G. Segal, Loop Groups, Clarendon Press, Oxford, 1986 | MR | Zbl

[42] B. Feigin, S. Loktev, On generalized Kostka polynomials and quantum Verlinde rule, E-print math.QA/9812093

[43] O. Foda, T. Miwa, Corner transfer matrices and quantum affine algebras, E-print hep-th/9204068 | MR

[44] M. Idzumi, K. Iohara, M. Jimbo, T. Miwa, T. Nakashima, T. Tokihiro, Quantum affine symmetry in vertex models, E-print hep-th/9208066 | MR

[45] M. Jimbo, T. Miwa, Y. Ohta, Structure of the space of states in RSOS models, E-print hep-th/9208067 | MR

[46] M. Kashiwara, T. Miwa, J. U. H. Petersen, C. M. Yung, Perfect crystals and $q$-deformed Fock spaces, E-print q-alg/9603025 | MR

[47] M. Jimbo, H. Konno, S. Odake, Y. Pugai, J. Shiraishi, Free field construction for the ABF models in regime, II, E-print math.QA/0001071 | MR

[48] A. H. Bougourzi, Bosonization of quantum affine groups and its application to the higher spin Heisenberg model, E-print q-alg/9706015

[49] O. Foda, K. C. Misra, M. Okado, Demazure modules and vertex models: the $\widehat{s\ell}(2)$ case, E-print q-alg/9602018 | MR

[50] A. Kuniba, K. C. Misra, M. Okado, J. Uchiyama, Demazure modules and perfect crystals, E-print q-alg/9607011 | MR

[51] A. Kuniba, K. C. Misra, M. Okado, T. Takagi, J. Uchiyama, Characters of Demazure modules and solvable lattice models, ; J. Algebra, 208 (1998), 185 ; E-print q-alg/9707004E-print q-alg/9707014 | MR | DOI | MR | Zbl

[52] A. Schilling, S. O. Warnaar, Supernomial coefficients, polynomial identities and $q$-series, E-print q-alg/9701007 | MR

[53] M. Wakimoto, Fusion rules for $N=2$ superconformal modules, E-print hep-th/9807144

[54] B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, J. Math. Phys., 39 (1998), 3865 ; E-print hep-th/9701043 | DOI | MR | Zbl | MR

[55] B. L. Feigin, A. M. Semikhatov, V. A. Sirota, I. Yu. Tipunin, Nucl. Phys. B, 536 (1999), 617 | DOI | MR | Zbl

[56] A. Schwimmer, N. Seiberg, Phys. Lett. B, 184 (1987), 191 | DOI | MR

[57] W. Boucher, D. Friedan, A. Kent, Phys. Lett. B, 172 (1986), 316 | DOI | MR | Zbl

[58] Y. Matsuo, Progr. Theor. Phys., 77 (1987), 793 | DOI | MR

[59] F. Ravanini, S.-K. Yang, Phys. Lett. B, 195 (1987), 202 | DOI | MR

[60] V. G. Kač, M. Wakimoto, Proc. Nat. Acad. Sci. USA, 85 (1988), 4956 | DOI | MR | Zbl

[61] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl

[62] V. A. Fateev, A. B. Zamolodchikov, YaF, 43 (1986), 1031

[63] A. M. Semikhatov, Verma modules, extremal vectors, and singular vectors on the non-critical $N=2$ string worldsheet, E-print hep-th/9610084

[64] P. Bowcock, B. L. Feigin, A. M. Semikhatov, A. Taormina, $\widehat{sl}(2\,|\,1)$ and $\widehat{D}(2\,|\,1;\alpha)$ as vertex operator extensions of dual affine $s\ell(2)$ algebras, ; Commun. Math. Phys., 214 (2000), 495 E-print hep-th/9907171 | MR | DOI | Zbl