Integrability of truncated Hugoniot--Maslov chains for trajectories of mesoscale vortices on shallow water
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 3, pp. 491-518
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of trajectories of “large” (mesoscale) shallow-water vortices manifests integrability properties. The Maslov hypothesis states that such vortices can be generated using solutions with weak pointlike singularities of the type of the square root of a quadratic form; such square-root singular solutions may describe the propagation of mesoscale vortices in the atmosphere (typhoons and cyclones). Such solutions are necessarily described by infinite systems of ordinary differential equations (chains) in the Taylor coefficients of solutions in the vicinities of singularities. A proper truncation of the “vortex chain” for a shallow-water system is a system of 17 nonlinear equations. This system becomes the Hill equation when the Coriolis force is constant and almost becomes the physical pendulum equations when the Coriolis force depends on the latitude. In a rough approximation, we can then explicitly describe possible trajectories of mesoscale vortices, which are analogous to oscillations of a rotating solid body swinging on an elastic thread.
@article{TMF_2000_125_3_a6,
author = {S. Yu. Dobrokhotov},
title = {Integrability of truncated {Hugoniot--Maslov} chains for trajectories of mesoscale vortices on shallow water},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {491--518},
publisher = {mathdoc},
volume = {125},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a6/}
}
TY - JOUR AU - S. Yu. Dobrokhotov TI - Integrability of truncated Hugoniot--Maslov chains for trajectories of mesoscale vortices on shallow water JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 491 EP - 518 VL - 125 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a6/ LA - ru ID - TMF_2000_125_3_a6 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %T Integrability of truncated Hugoniot--Maslov chains for trajectories of mesoscale vortices on shallow water %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 491-518 %V 125 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a6/ %G ru %F TMF_2000_125_3_a6
S. Yu. Dobrokhotov. Integrability of truncated Hugoniot--Maslov chains for trajectories of mesoscale vortices on shallow water. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 3, pp. 491-518. http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a6/