Symmetry approach to the integrability problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 3, pp. 355-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the results of the twenty-year development of the symmetry approach to classifying integrable models in mathematical physics. The generalized Toda chains and the related equations of the nonlinear Schrödinger type, discrete transformations, and hyperbolic systems are central in this approach. Moreover, we consider equations of the Painlevé type, master symmetries, and the problem of integrability criteria for $(2+1)$-dimensional models. We present the list of canonical forms for $(1+1)$-dimensional integrable systems. We elaborate the effective tests for integrability and the algorithms for reduction to the canonical form.
@article{TMF_2000_125_3_a0,
     author = {V. E. Adler and A. B. Shabat and R. I. Yamilov},
     title = {Symmetry approach to the integrability problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--424},
     year = {2000},
     volume = {125},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a0/}
}
TY  - JOUR
AU  - V. E. Adler
AU  - A. B. Shabat
AU  - R. I. Yamilov
TI  - Symmetry approach to the integrability problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 355
EP  - 424
VL  - 125
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a0/
LA  - ru
ID  - TMF_2000_125_3_a0
ER  - 
%0 Journal Article
%A V. E. Adler
%A A. B. Shabat
%A R. I. Yamilov
%T Symmetry approach to the integrability problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 355-424
%V 125
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a0/
%G ru
%F TMF_2000_125_3_a0
V. E. Adler; A. B. Shabat; R. I. Yamilov. Symmetry approach to the integrability problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 3, pp. 355-424. http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a0/

[1] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego prilozh., 27:2 (1993), 1–21 | MR | Zbl

[2] V. E. Adler, Physica D, 73 (1994), 335–351 | DOI | MR | Zbl

[3] A. B. Shabat, TMF, 121:1 (1999), 165–176 | DOI | MR | Zbl

[4] N. Kh. Ibragimov, A. B. Shabat, DAN SSSR, 244:1 (1979), 57–61 | MR | Zbl

[5] F. Calogero, A. Degasperis, Spectral Transforms and Solitons, North-Holland, Amsterdam, 1982 | MR | Zbl

[6] D. Levi, O. Ragnisko, M. A. Rodriges, TMF, 93:3 (1992), 473–480 | MR | Zbl

[7] S. P. Burtsev, V. E. Zakharov, A. V. Mikhailov, TMF, 70:3 (1987), 323–341 | MR | Zbl

[8] B. Fuchssteiner, Physica D, 13 (1984), 387–394 | DOI | MR | Zbl

[9] A. B. Shabat, V. V. Sokolov, Sov. Sci. Rev. Sec. C, 4 (1984), 221–280 | MR | Zbl

[10] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4 (1987), 3–53 | MR

[11] A. B. Shabat, “Kanonicheskaya seriya zakonov sokhraneniya”, P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 366–369 | MR

[12] A. V. Mikhailov, V. V. Sokolov, A. B. Shabat, “The symmetry approach to classification of integrable equations”, What is Integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl

[13] A. V. Mikhailov, A. B. Shabat, “Symmetries – test of integrability”, Important Developments in Soliton Theory, eds. A. Fokas, V. Zakharov, Springer, Berlin, 1993, 355–372 | MR

[14] I. T. Habibullin, V. V. Sokolov, R. I. Yamilov, “Multi-component integrable systems and nonassociative structures”, Nonlinear Physics: Theory and Experiment. Nature, Structure and Properties of Nonlinear Phenomena, Proc. of the Workshop (Lecce, Italy, June 29 – July 7, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Scientific, 1996, 139–168 | MR | Zbl

[15] A. Yu. Orlov, E. I. Shulman, TMF, 64:3 (1985), 323–328 | MR | Zbl

[16] A. B. Shabat, DAN SSSR, 211:6 (1973), 1310–1313 | MR | Zbl

[17] S. P. Novikov, Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl

[18] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1 (1976), 55–136 | MR | Zbl

[19] B. A. Dubrovin, UMN, 36:2 (1981), 11–80 | MR | Zbl

[20] J. Weiss, J. Math. Phys., 27:11 (1986), 2647–2656 ; 28:9 (1987), 2025–2039 | DOI | MR | Zbl | DOI | MR | Zbl

[21] V. I. Gromak, Diff. uravneniya, 9:11 (1973), 2082–2083 | MR | Zbl

[22] V. E. Adler, I. T. Khabibullin, Funkts. analiz i ego prilozh., 31:2 (1997), 1–14 | DOI | MR | Zbl

[23] B. Grammaticos, V. Papageorgiou, A. Ramani, Phys. Lett. A, 235 (1997), 475–479 | DOI | MR

[24] F. Nijhoff, J. Satsuma, K. Kajiwara, B. Grammaticos, A. Ramani, Inverse Problems, 12 (1996), 697–716 | DOI | MR | Zbl

[25] S. Yu. Dubov, V. M. Eleonskii, N. E. Kulagin, ZhETF, 102:3 (1992), 814–826 | MR

[26] A. B. Shabat, Inverse Problems, 6 (1992), 303–308 | DOI | MR

[27] A. Degasperis, A. B. Shabat, “Construction of reflectionless potentials with infinitely many discrete eigenvalues”, Proc. of NATO Advanced Research Workshop (Exeter, United Kingdom, July 14–19, 1992), NATO ASI Ser., Ser. C, Math. Phys. Sci., 413, Kluwer, Dordrecht, 1993, 115–123 | MR | Zbl

[28] A. Degasperis, A. B. Shabat, TMF, 100:2 (1994), 230–247 | MR | Zbl

[29] V. E. Adler, “On the rational solutions of the Shabat equation”, Nonlinear Physics: Theory and Experiment. Nature, Structure and Properties of Nonlinear Phenomena, Proc. of the Workshop (Lecce, Italy, June 29 – July 7, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Scientific, 1996, 53–61 | MR

[30] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, Commun. Math. Phys., 115 (1988), 1–19 | DOI | MR

[31] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR

[32] R. I. Yamilov, “Classification of Toda type scalar lattices”, Proc. of 8th Int. Workshop NEEDS'92 (Dubna, Russia, July 6–17, 1992), eds. V. Makhankov, I. Puzynin, O. Pashaev, World Scientific, Singapore, 1993, 423–431

[33] V. E. Adler, A. B. Shabat, TMF, 111:3 (1997), 323–334 | DOI | MR | Zbl

[34] V. E. Adler, A. B. Shabat, TMF, 112:2 (1997), 179–194 | DOI | MR | Zbl

[35] V. G. Marikhin, A. B. Shabat, TMF, 118:2 (1999), 217–228 | DOI | MR | Zbl

[36] R. I. Yamilov, Simmetriinyi podkhod k klassifikatsii s tochki zreniya integriruemykh differentsialno-raznostnykh uravnenii. Teoriya preobrazovanii, Diss. ...dokt.f.-m.n., In-t matematiki Ufimskogo tsentra RAN, Ufa, 2000

[37] V. E. Adler, R. I. Yamilov, J. Phys. A, 27 (1994), 477–492 | DOI | MR | Zbl

[38] V. E. Adler, A. B. Shabat, TMF, 115:3 (1998), 349–358 | DOI | MR

[39] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[40] A. V. Zhiber, A. B. Shabat, DAN SSSR, 247:5 (1979), 1103–1107 | MR

[41] A. B. Borisov, S. A. Zykov, TMF, 115:2 (1998), 199–214 | DOI | MR | Zbl

[42] A. V. Zhiber, V. V. Sokolov, TMF, 120:1 (1999), 20–26 | DOI | MR | Zbl

[43] V. V. Sokolov, A. V. Zhiber, Phys. Lett. A, 208 (1995), 303–308 | DOI | MR | Zbl

[44] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint Bashkirskogo filiala AN SSSR, Izd-vo Bashkirskogo filiala AN SSSR, Ufa, 1981

[45] A. N. Leznov, A. B. Shabat, R. I. Yamilov, Phys. Lett. A, 174 (1993), 397–402 | DOI | MR

[46] K. Pohlmeyer, Commun. Math. Phys., 46 (1976), 207–218 | DOI | MR

[47] F. Lund, T. Regge, Phys. Rev. D, 14 (1976), 1524–1538 | DOI | MR

[48] V. E. Adler, TMF, 124:1 (2000), 48–61 | DOI | MR | Zbl

[49] M. J. Ablowitz, J. F. Ladik, J. Math. Phys, 17:6 (1976), 1011–1018 | DOI | MR | Zbl

[50] E. K. Sklyanin, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[51] O. Ragnisco, P. M. Santini, Inverse Problems, 6 (1990), 441–452 | DOI | MR | Zbl

[52] R. I. Yamilov, Diskretnye uravneniya vida $du_n/dt=F(u_{n-1},u_n,u_{n+1})$ $(n\in\mathbb Z)$ s beskonechnym naborom lokalnykh zakonov sokhraneniya, Diss. ...kand.f.-m.n., In-t matematiki Ufimskogo tsentra RAN, Ufa, 1984

[53] R. I. Yamilov, UMN, 38:6 (1983), 155–156 | MR

[54] R. I. Yamilov, J. Phys. A, 27 (1994), 6839–6851 | DOI | MR | Zbl

[55] D. Levi, R. Yamilov, J. Math. Phys., 38:12 (1997), 6648–6674 | DOI | MR | Zbl

[56] I. Yu. Cherdantsev, R. I. Yamilov, Physica D, 87 (1995), 140–144 | DOI | MR | Zbl

[57] O. I. Bogoyavlenskii, Oprokidyvayuschiesya solitony. Nelineinye integriruemye uravneniya, Nauka, M., 1991 | MR

[58] R. I. Yamilov, TMF, 85:3 (1990), 368–375 | MR | Zbl

[59] V. E. Adler, Int. Math. Res. Notices, 1998, no. 1, 1–4 | DOI | Zbl

[60] A. B. Shabat, R. I. Yamilov, Phys. Lett. A, 227 (1997), 15–23 | DOI | MR | Zbl

[61] A. S. Fokas, B. Fuchssteiner, Phys. Lett. A, 86 (1981), 341 | DOI | MR

[62] D. Levi, O. Ragnisco, J. Phys. A, 12 (1979), 157–167 | DOI | MR

[63] W. Oevel, H. Zhang, B. Fuchssteiner, Progr. Theor. Phys., 81:2 (1989), 294–308 | DOI | MR

[64] W. Strampp, W. Oevel, Progr. Theor. Phys., 74:4 (1985), 922–925 | DOI | MR | Zbl

[65] W. Oevel, B. Fuchssteiner, H. Zhang, O. Ragnisco, J. Math. Phys., 30 (1989), 2664–2670 | DOI | MR | Zbl

[66] D. Levi, P. Winternitz, Phys. Lett. A, 129:3 (1988), 165–167 | DOI | MR

[67] W. Oevel, B. Fuchssteiner, Phys. Lett. A, 88 (1982), 323–327 | DOI | MR

[68] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe, Minsk, 1990 | MR | Zbl

[69] A. P. Veselov, S. P. Novikov, DAN SSSR, 279 (1984), 20–24 | MR | Zbl

[70] L. P. Nizhnik, DAN SSSR, 254 (1980), 332–335 | MR | Zbl

[71] M. Boiti, J. J.-P. Leon, M. Manna, F. Pempinelli, Inverse Problems, 2 (1986), 271–279 | DOI | MR | Zbl

[72] E. L. Mansfield, P. A. Clarkson, Math. Comput. Simul., 43 (1997), 39–55 | DOI | MR | Zbl

[73] A. V. Mikhailov, R. I. Yamilov, J. Phys. A, 31 (1998), 6707–6715 | DOI | MR | Zbl

[74] I. M. Krichever, S. P. Novikov, UMN, 35 (1980), 47–68 | MR | Zbl

[75] S. I. Svinolupov, UMN, 40:5 (1985), 263–264 | MR | Zbl