Symmetry approach to the integrability problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 3, pp. 355-424
Voir la notice de l'article provenant de la source Math-Net.Ru
We review the results of the twenty-year development of the symmetry approach to classifying integrable models in mathematical physics. The generalized Toda chains and the related equations of the nonlinear Schrödinger type, discrete transformations, and hyperbolic systems are central in this approach. Moreover, we consider equations of the Painlevé type, master symmetries, and the problem of integrability criteria for $(2+1)$-dimensional models. We present the list of canonical forms for $(1+1)$-dimensional integrable systems. We elaborate the effective tests for integrability and the algorithms for reduction to the canonical form.
@article{TMF_2000_125_3_a0,
author = {V. E. Adler and A. B. Shabat and R. I. Yamilov},
title = {Symmetry approach to the integrability problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--424},
publisher = {mathdoc},
volume = {125},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a0/}
}
TY - JOUR AU - V. E. Adler AU - A. B. Shabat AU - R. I. Yamilov TI - Symmetry approach to the integrability problem JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 355 EP - 424 VL - 125 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a0/ LA - ru ID - TMF_2000_125_3_a0 ER -
V. E. Adler; A. B. Shabat; R. I. Yamilov. Symmetry approach to the integrability problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 3, pp. 355-424. http://geodesic.mathdoc.fr/item/TMF_2000_125_3_a0/