Thermodynamics of a vortex system in thin-layer semiconductors
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 326-338
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a method for estimating a classical partition function for a system of $N$ particles that reduces it to the partition function of a scalar field model of the sine-Gordon type. We find the free energy of a system of magnetic vortices in a thin-layer semiconductor and investigate its equilibrium properties in the leading order of the perturbation theory, which corresponds to a circle approximation for a particle system.
@article{TMF_2000_125_2_a9,
     author = {A. N. Artemov},
     title = {Thermodynamics of a vortex system in thin-layer semiconductors},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {326--338},
     year = {2000},
     volume = {125},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a9/}
}
TY  - JOUR
AU  - A. N. Artemov
TI  - Thermodynamics of a vortex system in thin-layer semiconductors
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 326
EP  - 338
VL  - 125
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a9/
LA  - ru
ID  - TMF_2000_125_2_a9
ER  - 
%0 Journal Article
%A A. N. Artemov
%T Thermodynamics of a vortex system in thin-layer semiconductors
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 326-338
%V 125
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a9/
%G ru
%F TMF_2000_125_2_a9
A. N. Artemov. Thermodynamics of a vortex system in thin-layer semiconductors. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 326-338. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a9/

[1] J. R. Clem, Phys. Rev. B, 43 (1991), 7837 | DOI

[2] S. N. Artemenko, A. N. Kruglov, Phys. Lett. A, 143 (1990), 485 | DOI

[3] V. L. Berezinskii, ZhETF, 61 (1971), 1144

[4] J. M. Kosterlitz, D. G. Thouless, J. Phys. C, 6 (1973), 1181 | DOI

[5] V. Cataudella, P. Minnhagen, Physica C, 166 (1990), 442 | DOI

[6] P. Minnhagen, Rev. Mod. Phys., 59 (1987), 1001 | DOI

[7] G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. L. Larkin, V. M. Vinokur, Rev. Mod. Phys., 60 (1994), 1125 | DOI

[8] J. Pearl, Appl. Phys. Lett., 5 (1964), 65 | DOI

[9] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, Mir, M., 1978 | MR

[10] V. S. Kapitonov, V. N. Popov, TMF, 26 (1976), 246

[11] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[12] J. Frölich, “Quantum sine-Gordon equation and quantum solitons in two space-time dimensions”, Renormalization Theory, Proceedings of the NATO advanced study Institute held at the international school of mathematical physics, eds. G. Velo, A. S. Wightman, Reidel, Dordrecht, 1975, 371 | MR

[13] V. N. Ryzhov, E. E. Tareyeva, Phys. Rev. B, 49 (1993), 6162 | DOI

[14] A. L. Kholodenko, J. Chem. Phys., 91 (1989), 4849 | DOI | MR