Radial Schr\"odinger equation: The spectral problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 242-252

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the integral transformation method involving the investigation of the Laplace tranforms of wave functions, we find the discrete spectra of the radial Schrödinger equation with a confining power-growth potential and with the generalized nuclear Coulomb attracting potential. The problem is reduced to solving a system of linear algebraic equations approximately. We give the results of calculating the discrete spectra of the $S$-states for the Schrödinger equation with a linearly growing confining potential and the nuclear Yukawa potential.
@article{TMF_2000_125_2_a3,
     author = {O. S. Pavlova and A. R. Frenkin},
     title = {Radial {Schr\"odinger} equation: {The} spectral problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {242--252},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a3/}
}
TY  - JOUR
AU  - O. S. Pavlova
AU  - A. R. Frenkin
TI  - Radial Schr\"odinger equation: The spectral problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 242
EP  - 252
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a3/
LA  - ru
ID  - TMF_2000_125_2_a3
ER  - 
%0 Journal Article
%A O. S. Pavlova
%A A. R. Frenkin
%T Radial Schr\"odinger equation: The spectral problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 242-252
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a3/
%G ru
%F TMF_2000_125_2_a3
O. S. Pavlova; A. R. Frenkin. Radial Schr\"odinger equation: The spectral problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 242-252. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a3/