Radial Schrödinger equation: The spectral problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 242-252
Cet article a éte moissonné depuis la source Math-Net.Ru
Using the integral transformation method involving the investigation of the Laplace tranforms of wave functions, we find the discrete spectra of the radial Schrödinger equation with a confining power-growth potential and with the generalized nuclear Coulomb attracting potential. The problem is reduced to solving a system of linear algebraic equations approximately. We give the results of calculating the discrete spectra of the $S$-states for the Schrödinger equation with a linearly growing confining potential and the nuclear Yukawa potential.
@article{TMF_2000_125_2_a3,
author = {O. S. Pavlova and A. R. Frenkin},
title = {Radial {Schr\"odinger} equation: {The} spectral problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {242--252},
year = {2000},
volume = {125},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a3/}
}
O. S. Pavlova; A. R. Frenkin. Radial Schrödinger equation: The spectral problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 242-252. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a3/
[1] C. Quigg, J. L. Rosner, Phys. Rep., 56 (1979), 167 | DOI | MR
[2] A. S. Vshivtsev, N. V. Norin, V. N. Sorokin, TMF, 109:1 (1996), 107 | DOI | MR
[3] A. S. Vshivtsev, V. A. Vshivtsev, A. V. Tatarintsev, A. R. Frenkin, Vestn. Mosk. un-ta. Fiz. Astron., 1999, no. 5, 62
[4] O. S. Pavlova, A. R. Frenkin, Vestn. Mosk. un-ta. Fiz. Astron., 2000, no. 1, 58
[5] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR
[6] Dzh. Blatt, V. Vaiskopf, Teoreticheskaya yadernaya fizika, IL, M., 1954
[7] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1966 | Zbl