Radial Schr\"odinger equation: The spectral problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 242-252
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the integral transformation method involving the investigation of the Laplace tranforms of wave functions, we find the discrete spectra of the radial Schrödinger equation with a confining power-growth potential and with the generalized nuclear Coulomb attracting potential. The problem is reduced to solving a system of linear algebraic equations approximately. We give the results of calculating the discrete spectra of the $S$-states for the Schrödinger equation with a linearly growing confining potential and the nuclear Yukawa potential.
@article{TMF_2000_125_2_a3,
author = {O. S. Pavlova and A. R. Frenkin},
title = {Radial {Schr\"odinger} equation: {The} spectral problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {242--252},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a3/}
}
O. S. Pavlova; A. R. Frenkin. Radial Schr\"odinger equation: The spectral problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 242-252. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a3/