Generalized energy–time uncertainty relation
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 221-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Starting with the Schrödinger universal uncertainty relations for arbitrary observables, we propose a generalization of the time uncertainty concept introduced by Mandelshtam and Tamm making it invariant with respect to the choice of observables and free of singularities. We show that for coherent states, the quantity introduced can be interpreted as the variance of the inverse effective frequency of the microsystem. This allows treating the generalized energy–time uncertainty relations similarly to the energy–inverse temperature uncertainty relations in statistical thermodynamics.
@article{TMF_2000_125_2_a2,
     author = {A. D. Sukhanov},
     title = {Generalized energy{\textendash}time uncertainty relation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {221--241},
     year = {2000},
     volume = {125},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a2/}
}
TY  - JOUR
AU  - A. D. Sukhanov
TI  - Generalized energy–time uncertainty relation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 221
EP  - 241
VL  - 125
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a2/
LA  - ru
ID  - TMF_2000_125_2_a2
ER  - 
%0 Journal Article
%A A. D. Sukhanov
%T Generalized energy–time uncertainty relation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 221-241
%V 125
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a2/
%G ru
%F TMF_2000_125_2_a2
A. D. Sukhanov. Generalized energy–time uncertainty relation. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 221-241. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a2/

[1] W. Heizenberg, Z. Phys., 43 (1927), 172–198 | DOI

[2] N. Bor, Izbrannye nauchnye trudy, T. 2, Nauka, M., 1971

[3] Ya. I. Khurgin, V. P. Yakovlev, Finitnye funktsii v fizike i tekhnike, Nauka, M., 1971 | Zbl

[4] H. P. Robertson, Phys. Rev., 34 (1929), 163–164 | DOI

[5] V. V. Dodonov, V. I. Manko, Tr. FIAN, 183, 1987, 5–70 | MR

[6] A. Messia, Kvantovaya mekhanika, T. 1, Nauka, M., 1978 | MR

[7] L. I. Mandelshtam, I. E. Tamm, Izv. AN SSSR. Ser. fizich., 9:1/2 (1945), 122–128 | MR

[8] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike, Izd-vo LGU, L., 1980 | MR

[9] E. Shredinger, Izbrannye trudy po kvantovoi mekhanike, Nauka, M., 1976

[10] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[11] Yu. A. Rozanov, Sluchainye protsessy, Nauka, M., 1971 | MR | Zbl

[12] L. Shiff, Kvantovaya mekhanika, Mir, M., 1959

[13] A. Einshtein, Sobranie nauchnykh trudov, T. 3, Nauka, M., 1966

[14] A. D. Sukhanov, “On the global interrelation between quantum dynamics and thermodynamics”, Proc. of the XIth International Conference “Problems of Quantum Field Theory” (Dubna, 1998), eds. B. M. Barbashov, G. V. Efimov, A. V. Efremov, JINR, Dubna, 1999, 232–236

[15] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1964 | Zbl

[16] A. I. Anselm, Osnovy statisticheskoi fiziki i termodinamiki, Nauka, M., 1973 | MR

[17] A. Myunster, “Teoriya fluktuatsii”, Termodinamika neobratimykh protsessov, ed. D. N. Zubarev, IIL, M., 1962, 36–179

[18] R. Fürth, Z. Phys., 81 (1933), 143–149 | DOI

[19] L. Rosenfeld, “Questions of irreversibility and ergodicity”, Proc. of E. Fermi School of Physics, V. 14, ed. P. Caldirola, Academic Press, New York, 1962, 1–19 | MR

[20] B. Mandelbrot, J. Math. Phys., 5 (1964), 164–167 | DOI | MR

[21] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika. Teoriya neravnovesnykh sistem, Izd-vo MGU, M., 1987 | MR

[22] J. Uffink, J. van Lith, J. Found. Phys., 28 (1998), 323–347

[23] G. S. Gorelik, Kolebaniya i volny, Fizmatlit, M., 1959

[24] D. A. Kirzhnits, Sorosovskii obrazovatelnyi zhurnal, 1997, no. 6, 84–91

[25] B. B. Kadomtsev, Dinamika i informatsiya, Redaktsiya UFN, M., 1997 | MR

[26] I. D. Novikov, V. P. Frolov, Fizika chernykh dyr, Nauka, M., 1981

[27] A. G. Bashkirov, A. D. Sukhanov, TMF, 123:1 (2000), 107–115 | DOI | MR | Zbl