Characteristic features of the dynamics of the Ginzburg--Landau equation in a plane domain
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 205-220

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the boundary value problem $w_t=\varkappa_0\Delta w+\varkappa_1w-\varkappa_2w|w|^2$, $w|_{\partial\Omega_0}=0$ in the domain $\Omega_0=\bigl\{(x,y)\:0\leq x\leq l_1,0\leq y\leq l_2\bigr\}$. Here, $w$ is a complex-valued function, $\Delta$ is the Laplace operator, and $\varkappa_j$, $j=0,1,2$, are complex constants with $\mathrm{Re}\varkappa_j>0$. We show that under a rather general choice of the parameters $l_1$ and $l_2$, the number of stable invariant tori in the problem, as well as their dimensions, grows infinitely as $\mathrm{Re}\varkappa_0\to0$ and $\mathrm{Re}\varkappa_1\to0$.
@article{TMF_2000_125_2_a1,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Characteristic features of the dynamics of the {Ginzburg--Landau} equation in a plane domain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--220},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Characteristic features of the dynamics of the Ginzburg--Landau equation in a plane domain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 205
EP  - 220
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a1/
LA  - ru
ID  - TMF_2000_125_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Characteristic features of the dynamics of the Ginzburg--Landau equation in a plane domain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 205-220
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a1/
%G ru
%F TMF_2000_125_2_a1
A. Yu. Kolesov; N. Kh. Rozov. Characteristic features of the dynamics of the Ginzburg--Landau equation in a plane domain. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 205-220. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a1/