Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 205-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the boundary value problem $w_t=\varkappa_0\Delta w+\varkappa_1w-\varkappa_2w|w|^2$, $w|_{\partial\Omega_0}=0$ in the domain $\Omega_0=\bigl\{(x,y)\:0\leq x\leq l_1,0\leq y\leq l_2\bigr\}$. Here, $w$ is a complex-valued function, $\Delta$ is the Laplace operator, and $\varkappa_j$, $j=0,1,2$, are complex constants with $\mathrm{Re}\varkappa_j>0$. We show that under a rather general choice of the parameters $l_1$ and $l_2$, the number of stable invariant tori in the problem, as well as their dimensions, grows infinitely as $\mathrm{Re}\varkappa_0\to0$ and $\mathrm{Re}\varkappa_1\to0$.
@article{TMF_2000_125_2_a1,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Characteristic features of the dynamics of the {Ginzburg{\textendash}Landau} equation in a plane domain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--220},
     year = {2000},
     volume = {125},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 205
EP  - 220
VL  - 125
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a1/
LA  - ru
ID  - TMF_2000_125_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 205-220
%V 125
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a1/
%G ru
%F TMF_2000_125_2_a1
A. Yu. Kolesov; N. Kh. Rozov. Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 2, pp. 205-220. http://geodesic.mathdoc.fr/item/TMF_2000_125_2_a1/

[1] A. A. Andronov (ml.), A. L. Fabrikant, “Zatukhanie Landau, vetrovye volny i svistok”, Nelineinye volny, ed. A. V. Gaponov-Grekhov, Nauka, M., 1979, 68–104

[2] G. Nikolis, I. Prigozhin, Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979

[3] P. S. Hagan, SIAM J. Appl. Math., 42:4 (1982), 762–786 | DOI | MR | Zbl

[4] B. N. Belintsev, UFN, 141:1 (1983), 55–101 | DOI | MR

[5] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, “O klassifikatsii reshenii sistemy nelineinykh diffuzionnykh uravnenii v okrestnosti tochki bifurkatsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 28, ed. R. V. Gamkrelidze, VINITI, M., 1986, 207–313 | MR

[6] Yu. S. Kolesov, “Zadacha parazit–khozyain”, Dinamika biologicheskikh populyatsii, eds. I. N. Blokhina i dr., Gorkovskii gos. un-t, Gorkii, 1984, 28–34

[7] Yu. S. Kolesov, Ukr. matem. zhurn., 39:1 (1987), 27–34 | MR

[8] Yu. S. Kolesov, Matem. sb., 184:3 (1993), 121–136 | Zbl

[9] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[10] P. E. Sobolevskii, Tr. Mosk. matem. ob-va, 10, 1961, 297–350 | MR | Zbl

[11] E. F. Mischenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Izd. firma “Fizmatlit”, M., 1995 | MR

[12] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii, Nauka; MAIK “Nauka”, M.; Тр. МИАН, 222, 1998

[13] L. D. Landau, DAN SSSR, 44:8 (1943), 339–342

[14] A. A. Zakharov, Yu. S. Kolesov, “Prostranstvenno neodnorodnye rezhimy v zadache khischnik–zhertva”, Nelineinye kolebaniya i ekologiya, eds. V. Sh. Burd i dr., Yaroslavskii gos. un-t, Yaroslavl, 1984, 3–15 | MR

[15] V. F. Kambulov, A. Yu. Kolesov, N. Kh. Rozov, Diff. uravneniya, 33:5 (1997), 638–645 | MR | Zbl

[16] V. F. Kambulov, A. Yu. Kolesov, N. Kh. Rozov, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 1999, no. 3, 23–27

[17] A. Yu. Kolesov, N. Kh. Rozov, Izv. RAN. Ser. matem., 62:5 (1998), 135–164 | DOI | MR | Zbl

[18] B. Khessard, N. Kazarinov, I. Ven, Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR