Spectral properties of Wick power series for a free field with an indefinite metric
Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 1, pp. 57-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of infinite series in Wick powers of a free field whose two-point correlation function has singular infrared behavior and does not satisfy the positivity condition are investigated. If these series are defined on an appropriate functional domain, then the fields they converge to satisfy all conditions of the pseudo-Wightman formalism. For series convergent only on analytic test functions in the momentum representation, the spectral condition is formulated using the previously introduced notion of the carrier cone of an analytic functional. A suitable generalization of the Paley–Wiener–Schwartz theorem is used to prove that this condition is satisfied.
@article{TMF_2000_125_1_a1,
     author = {A. G. Smirnov and M. A. Soloviev},
     title = {Spectral properties of {Wick} power series for a free field with an indefinite metric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {57--73},
     year = {2000},
     volume = {125},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_125_1_a1/}
}
TY  - JOUR
AU  - A. G. Smirnov
AU  - M. A. Soloviev
TI  - Spectral properties of Wick power series for a free field with an indefinite metric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 57
EP  - 73
VL  - 125
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_125_1_a1/
LA  - ru
ID  - TMF_2000_125_1_a1
ER  - 
%0 Journal Article
%A A. G. Smirnov
%A M. A. Soloviev
%T Spectral properties of Wick power series for a free field with an indefinite metric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 57-73
%V 125
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_125_1_a1/
%G ru
%F TMF_2000_125_1_a1
A. G. Smirnov; M. A. Soloviev. Spectral properties of Wick power series for a free field with an indefinite metric. Teoretičeskaâ i matematičeskaâ fizika, Tome 125 (2000) no. 1, pp. 57-73. http://geodesic.mathdoc.fr/item/TMF_2000_125_1_a1/

[1] A. G. Smirnov, M. A. Solovev, TMF, 123:3 (2000), 355 | DOI | MR | Zbl

[2] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[3] U. Moschella, F. Strocchi, Lett. Math. Phys., 24 (1992), 103 | DOI | MR | Zbl

[4] U. Moschella, J. Math. Phys., 34 (1993), 535 | DOI | MR | Zbl

[5] M. A. Solovev, TMF, 105 (1995), 405 | Zbl

[6] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, T. 2, Fizmatgiz, M., 1958 | MR | Zbl

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR

[8] M. A. Soloviev, Lett. Math. Phys., 33 (1995), 49 | DOI | MR | Zbl

[9] M. A. Soloviev, Commun. Math. Phys., 184 (1997), 579 | DOI | MR | Zbl

[10] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973

[11] S. Mandelbroit, Teoremy zamknutosti i teoremy kompozitsii, IL, M., 1962