Random point fields with Markovian refinements and the geometry of fractally disordered media
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 490-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a general construction of the probability measure for describing stochastic fractals that model fractally disordered media. For these stochastic fractals, we introduce the notion of a metrically homogeneous fractal Hausdorff–Karathéodory measure of a nonrandom type. We select a class $\mathbf F[q]$ of random point fields with Markovian refinements for which we explicitly construct the probability distribution. We prove that under rather weak conditions, the fractal dimension $D$ for random fields of this class is a self-averaging quantity and a fractal measure of a nonrandom type (the Hausdorff $D$-measure) can be defined on these fractals with probability 1.
@article{TMF_2000_124_3_a9,
     author = {Yu. P. Virchenko and O. L. Shpilinskaya},
     title = {Random point fields with {Markovian} refinements and the geometry of fractally disordered media},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {490--505},
     year = {2000},
     volume = {124},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a9/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - O. L. Shpilinskaya
TI  - Random point fields with Markovian refinements and the geometry of fractally disordered media
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 490
EP  - 505
VL  - 124
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a9/
LA  - ru
ID  - TMF_2000_124_3_a9
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A O. L. Shpilinskaya
%T Random point fields with Markovian refinements and the geometry of fractally disordered media
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 490-505
%V 124
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a9/
%G ru
%F TMF_2000_124_3_a9
Yu. P. Virchenko; O. L. Shpilinskaya. Random point fields with Markovian refinements and the geometry of fractally disordered media. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 490-505. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a9/

[1] J. Zaiman, Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems, Cambridge University Press, Cambridge, 1979 | MR

[2] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[3] V. Z. Belenkii, Geometriko-veroyatnostnye modeli kristallizatsii, Nauka, M., 1980

[4] K. Matthes, J. Kerstan, J. Mecke, Infinitely Divisible Point Processes, Academie-Verlag, Berlin ; John Wiley Sons, New York, 1978 | MR | MR | Zbl

[5] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[6] P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, New York, 1994 | MR | Zbl

[7] M. F. Barnsley, Fractals Everywhere, Academic Press, Orlando, Florida, 1988 | MR | Zbl

[8] K. R. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1983 | MR

[9] A. Ya. Virchenko, A. Ya. Dulfan, Functional Materials, 5:4 (1998), 471–474

[10] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl

[11] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR