Two-body problem on spaces of constant curvature: II.~Spectral properties of the Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 481-489
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of two bodies with a central interaction on simply connected constant-curvature spaces of arbitrary dimension. We construct the self-adjoint extension of the quantum Hamiltonian, which was explicitly expressed through the radial differential operator and the generators of the isometry group of a configuration space in Part I of this paper. Exact spectral series are constructed for several potentials in the space $\mathbb S^3$.
@article{TMF_2000_124_3_a8,
author = {I. \'E. Stepanova and A. V. Shchepetilov},
title = {Two-body problem on spaces of constant curvature: {II.~Spectral} properties of the {Hamiltonian}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {481--489},
publisher = {mathdoc},
volume = {124},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a8/}
}
TY - JOUR AU - I. É. Stepanova AU - A. V. Shchepetilov TI - Two-body problem on spaces of constant curvature: II.~Spectral properties of the Hamiltonian JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 481 EP - 489 VL - 124 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a8/ LA - ru ID - TMF_2000_124_3_a8 ER -
%0 Journal Article %A I. É. Stepanova %A A. V. Shchepetilov %T Two-body problem on spaces of constant curvature: II.~Spectral properties of the Hamiltonian %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 481-489 %V 124 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a8/ %G ru %F TMF_2000_124_3_a8
I. É. Stepanova; A. V. Shchepetilov. Two-body problem on spaces of constant curvature: II.~Spectral properties of the Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 481-489. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a8/