Two-body problem on spaces of constant curvature: II. Spectral properties of the Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 481-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of two bodies with a central interaction on simply connected constant-curvature spaces of arbitrary dimension. We construct the self-adjoint extension of the quantum Hamiltonian, which was explicitly expressed through the radial differential operator and the generators of the isometry group of a configuration space in Part I of this paper. Exact spectral series are constructed for several potentials in the space $\mathbb S^3$.
@article{TMF_2000_124_3_a8,
     author = {I. \'E. Stepanova and A. V. Shchepetilov},
     title = {Two-body problem on spaces of constant curvature: {II.~Spectral} properties of the {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {481--489},
     year = {2000},
     volume = {124},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a8/}
}
TY  - JOUR
AU  - I. É. Stepanova
AU  - A. V. Shchepetilov
TI  - Two-body problem on spaces of constant curvature: II. Spectral properties of the Hamiltonian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 481
EP  - 489
VL  - 124
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a8/
LA  - ru
ID  - TMF_2000_124_3_a8
ER  - 
%0 Journal Article
%A I. É. Stepanova
%A A. V. Shchepetilov
%T Two-body problem on spaces of constant curvature: II. Spectral properties of the Hamiltonian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 481-489
%V 124
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a8/
%G ru
%F TMF_2000_124_3_a8
I. É. Stepanova; A. V. Shchepetilov. Two-body problem on spaces of constant curvature: II. Spectral properties of the Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 481-489. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a8/

[1] A. V. Schepetilov, TMF, 124:2 (2000), 249 | DOI | MR

[2] E. G. Kalnins, W. Miller Jr., G. S. Pogosyan, J. Math. Phys., 37 (1996), 6439 ; 38 (1997), 5416 | DOI | MR | Zbl | DOI | MR | Zbl

[3] E. G. Kalnins, W. Miller Jr., Ye. M. Hakobyan, G. S. Pogosyan, J. Math. Phys., 40 (1999), 2291 | DOI | MR | Zbl

[4] A. V. Schepetilov, TMF, 118 (1999), 248 | DOI | Zbl

[5] A. G. Ushveridze, EChAYa, 20 (1989), 1185 ; 23 (1992), 58 | MR | MR

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[7] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[8] D. A. Levin, Trans. Am. Math. Soc., 144 (1969), 493 ; S. S. Gelbart, Trans. Am. Math. Soc., 192 (1974), 29 ; R. S. Strichartz, Canad. J. Math., 27 (1975), 294 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[9] A. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[10] U. Ottoson, Commun. Math. Phys., 8 (1968), 228 | DOI | MR | Zbl

[11] P. W. Higgs, J. Phys. A, 12 (1979), 309 | DOI | MR | Zbl

[12] M. C. Gutzwiller, Chaos in classical and quantum mechanics, Springer, New York, 1992 | MR