An integral semiclassical method for calculating the spectra for centrally symmetric potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 463-480
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a new approach to semiclassical quantization conditions that does not involve asymptotic expansions and is based on exact general properties of wave equations and their spectra. For centrally symmetric potentials, the quantization conditions depend only on a collection of integrals involving powers of the classical momentum. The energy levels calculated using these conditions are in good agreement with numerical data.
@article{TMF_2000_124_3_a7,
     author = {A. A. Lobashev and N. N. Trunov},
     title = {An integral semiclassical method for calculating the spectra for centrally symmetric potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {463--480},
     year = {2000},
     volume = {124},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a7/}
}
TY  - JOUR
AU  - A. A. Lobashev
AU  - N. N. Trunov
TI  - An integral semiclassical method for calculating the spectra for centrally symmetric potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 463
EP  - 480
VL  - 124
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a7/
LA  - ru
ID  - TMF_2000_124_3_a7
ER  - 
%0 Journal Article
%A A. A. Lobashev
%A N. N. Trunov
%T An integral semiclassical method for calculating the spectra for centrally symmetric potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 463-480
%V 124
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a7/
%G ru
%F TMF_2000_124_3_a7
A. A. Lobashev; N. N. Trunov. An integral semiclassical method for calculating the spectra for centrally symmetric potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 463-480. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a7/

[1] A. A. Lobashev, N. N. Trunov, TMF, 120 (1999), 99 | DOI | MR | Zbl

[2] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | Zbl

[3] C. Quigg, J. L. Rosner, Phys. Rep., 56 (1979), 167 | DOI | MR

[4] P. V. Elyutin, V. D. Krivchenkov, Kvantovaya mekhanika s zadachami, Nauka, M., 1976

[5] A. B. Migdal, Kachestvennye metody kvantovoi teorii, Nauka, M., 1974 | MR

[6] B. M. Karnakov, V. D. Mur, V. S. Popov, ZhETF, 107 (1995), 1768

[7] A. A. Lokshin, E. A. Sagomonyan, Geometricheskie metody v teorii spektrov, Izd-vo MGU, M., 1996 | Zbl

[8] Yu. V. Tarbeev, N. N. Trunov, A. A. Lobashev, V. V. Kukhar, ZhETF, 112 (1997), 1226

[9] Z. Flyugge, Zadachi po kvantovoi mekhanike, T. 1, Mir, M., 1974, s. 187

[10] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR

[11] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Ch. II, Fizmatgiz, M., 1963

[12] V. M. Mostepanenko, N. N. Trunov, Effekt Kazimira i ego prilozheniya, Energoatomizdat, M., 1990

[13] O. I. Marichev, Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka i tekhnika, Minsk, 1978 | MR