Equivalence of the Duffin--Kemmer--Petiau and Klein--Gordon--Fock equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 445-462
Voir la notice de l'article provenant de la source Math-Net.Ru
A strict proof of the equivalence of the Duffin–Kemmer–Petiau and Klein–Gordon–Fock theories is presented for physical $S$-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin–Kemmer–Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the $S$-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.
@article{TMF_2000_124_3_a6,
author = {B. M. Pimentel and V. Ya. Fainberg},
title = {Equivalence of the {Duffin--Kemmer--Petiau} and {Klein--Gordon--Fock} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {445--462},
publisher = {mathdoc},
volume = {124},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a6/}
}
TY - JOUR AU - B. M. Pimentel AU - V. Ya. Fainberg TI - Equivalence of the Duffin--Kemmer--Petiau and Klein--Gordon--Fock equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 445 EP - 462 VL - 124 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a6/ LA - ru ID - TMF_2000_124_3_a6 ER -
B. M. Pimentel; V. Ya. Fainberg. Equivalence of the Duffin--Kemmer--Petiau and Klein--Gordon--Fock equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 445-462. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a6/