Degenerate integrable systems on the plane with a cubic integral of motion
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 426-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a classification of the known two-dimensional Hamiltonian systems of the natural form possessing an additional integral of motion that is cubic in the momenta. For degenerate systems of the Stäckel type, the additional cubic integral has the form of a “generalized angular momentum”. This allows constructing $n$-dimensional degenerate systems of the Stäckel type with additional cubic integrals of motion.
@article{TMF_2000_124_3_a5,
     author = {A. V. Tsiganov},
     title = {Degenerate integrable systems on the plane with a cubic integral of motion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {426--444},
     year = {2000},
     volume = {124},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a5/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Degenerate integrable systems on the plane with a cubic integral of motion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 426
EP  - 444
VL  - 124
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a5/
LA  - ru
ID  - TMF_2000_124_3_a5
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Degenerate integrable systems on the plane with a cubic integral of motion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 426-444
%V 124
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a5/
%G ru
%F TMF_2000_124_3_a5
A. V. Tsiganov. Degenerate integrable systems on the plane with a cubic integral of motion. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 426-444. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a5/

[1] P. Vinternits, Ya. A. Smorodinskii, M. Uglirzh, I. Frish, YaF, 4 (1966), 625

[2] N. W. Evans, Phys. Rev. A, 41 (1990), 5666 | DOI | MR

[3] D. Bonatos, C. Daskaloyannis, K. Kokkotas, Phys. Rev. A, 50 (1994), 3700 | DOI | MR

[4] P. Letourneau, L. Vinet, Ann. Phys., 243 (1995), 144 | DOI | MR | Zbl

[5] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, 3-e izd., Nauka, M., 1989 | MR

[6] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[7] E. T. Uitteker, Analiticheskaya dinamika, ONTI, Gl. red. tekhn.-teor. lit-ry, M.–L., 1937 | MR

[8] P. Stäckel, Compt. Rend. Acad. Sci. (Paris), 116 (1893), 485; 1284 | Zbl

[9] P.-S. Laplace, Traité de mechanique céleste, V. 1, Paris, 1799, P. 395

[10] J. Drach, Compt. Rend. Acad. Sci. (Paris), 200 (1935), 22 | Zbl

[11] A. S. Fokas, P. Lagerstrom, J. Math. Anal. Appl., 74 (1980), 325 | DOI | MR | Zbl

[12] C. R. Holt, J. Math. Phys., 23 (1982), 37 | DOI | MR

[13] G. Thompson, J. Math. Phys., 25 (1984), 3474 | DOI | MR | Zbl

[14] J. Hietarinta, Phys. Rep., 147 (1987), 87 | DOI | MR

[15] M. Karlovini, K. Rosquist, A unified treatment of cubic invariants at fixed and arbitrary energy, E-print solv-int/9811005 | MR

[16] A. V. Tsyganov, TMF, 115 (1998), 3 | DOI | MR | Zbl

[17] A. V. Tsyganov, TMF, 120 (1999), 27 | DOI | MR | Zbl

[18] A. V. Tsiganov, Canonical transformations of the extended phase space, Toda lattices and Stäckel family of integrable systems, E-print solv-int/9909006 | MR

[19] A. V. Tsiganov, Canonical transformations of the time for the Toda lattice and the Holt system, E-print solv-int/99011001 | MR

[20] A. V. Tsiganov, J. Phys. A, 32 (1999), 7983 | DOI | MR | Zbl

[21] P. Vanhaecke, Math. Z, 211 (1992), 265 | DOI | MR | Zbl