The disordered phase of the inhomogeneous Potts model is extremal on the Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 410-418
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the sufficient condition on the parameters of the inhomogeneous Potts model on the Cayley tree under which the disordered phase becomes extremal.
@article{TMF_2000_124_3_a3,
     author = {F. M. Mukhamedov and U. A. Rozikov},
     title = {The disordered phase of the inhomogeneous {Potts} model is extremal on the {Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--418},
     year = {2000},
     volume = {124},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a3/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
AU  - U. A. Rozikov
TI  - The disordered phase of the inhomogeneous Potts model is extremal on the Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 410
EP  - 418
VL  - 124
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a3/
LA  - ru
ID  - TMF_2000_124_3_a3
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%A U. A. Rozikov
%T The disordered phase of the inhomogeneous Potts model is extremal on the Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 410-418
%V 124
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a3/
%G ru
%F TMF_2000_124_3_a3
F. M. Mukhamedov; U. A. Rozikov. The disordered phase of the inhomogeneous Potts model is extremal on the Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 410-418. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a3/

[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[2] Ya. G. Sinai, Teoriya fazovykh perekhodov: Strogie rezultaty, Nauka, M., 1980 | MR

[3] P. M. Bleher, Commun. Math. Phys., 128 (1990), 411–419 | DOI | MR | Zbl

[4] P. M. Blekher, N. N. Ganikhodzhaev, Teor. veroyatn. i ee primen., 35:2 (1990), 220–230 | MR | Zbl

[5] N. N. Ganikhodzhaev, DAN RUz, 1992, no. 6–7, 4–7

[6] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[7] N. N. Ganikhodzhaev, U. A. Rozikov, Matem. sb., 190:2 (1999), 31–42 | DOI | Zbl