Model of a spatially inhomogeneous one-dimensional active medium
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 506-519 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the dynamics of one-dimensional discrete models of a one-component active medium analytically. The models represent spatially inhomogeneous diffusively concatenated systems of one-dimensional piecewise-continuous maps. The discontinuities (the defects) are interpreted as the differences in the parameters of the maps constituting the model. Two classes of defects are considered: spatially periodic defects and localized defects. The area of regular dynamics in the space of the parameters is estimated analytically. For the model with a periodic inhomogeneity, an exact analytic partition into domains with regular and with chaotic types of behavior is found. Numerical results are obtained for the model with a single defect. The possibility of the occurrence of each behavior type for the system as a whole is investigated.
@article{TMF_2000_124_3_a10,
     author = {K. A. Vasil'ev and A. Yu. Loskutov and S. D. Rybalko and D. N. Udin},
     title = {Model of a spatially inhomogeneous one-dimensional active medium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {506--519},
     year = {2000},
     volume = {124},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a10/}
}
TY  - JOUR
AU  - K. A. Vasil'ev
AU  - A. Yu. Loskutov
AU  - S. D. Rybalko
AU  - D. N. Udin
TI  - Model of a spatially inhomogeneous one-dimensional active medium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 506
EP  - 519
VL  - 124
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a10/
LA  - ru
ID  - TMF_2000_124_3_a10
ER  - 
%0 Journal Article
%A K. A. Vasil'ev
%A A. Yu. Loskutov
%A S. D. Rybalko
%A D. N. Udin
%T Model of a spatially inhomogeneous one-dimensional active medium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 506-519
%V 124
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a10/
%G ru
%F TMF_2000_124_3_a10
K. A. Vasil'ev; A. Yu. Loskutov; S. D. Rybalko; D. N. Udin. Model of a spatially inhomogeneous one-dimensional active medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 506-519. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a10/

[1] K. Kaneko, Physica D, 34 (1989), 1–41 | DOI | MR | Zbl

[2] K. Kaneko, Physica D, 37 (1989), 60–82 | DOI | MR

[3] L. A. Bunimovich, Ya. G. Sinai, “Statistical mechanics of coupled map lattices”, Theory and Applications of Coupled Map Lattices, ed. K. Kaneko, Wiley and Sons, San-Francisco, 1993, 169–189 | MR | Zbl

[4] A. S. Mikhailov, A. Yu. Loskutov, Chaos and Noise, Springer, Berlin, 1996 | MR

[5] M. Bär, M. Eiswirth, Phys. Rev. E, 48 (1993), 1635–1637 | DOI

[6] Zhilin Qu, J. N. Weiss, A. Garfinkel, Phys. Rev. Lett., 58 (1997), 1378–1390

[7] S. Morita, Phys. Lett. A, 226 (1997), 172–178 | DOI

[8] A. P. Muñuzuri, V. Perez-Muñuzuri, M. Gomez-Gesteira, L. O. Chua, V. Perez-Villar, Int. J. Bif. Chaos Appl. Sci. Eng., 5 (1995), 17–50 | DOI | Zbl

[9] L. A. Bunimovich, Physica D, 86 (1995), 248–255 | DOI | MR | Zbl

[10] K. Kaneko (ed.), Theory and Applications of Coupled Map Lattices, Wiley and Sons, San-Francisco, 1993 | MR

[11] “Chaos Focus Issue on Coupled Map Lattices”, Chaos, 2:3 (1992)

[12] K. Kaneko, Physica D, 41 (1990), 137–172 | DOI | MR | Zbl

[13] L. A. Bunimovich, Ya. G. Sinai, Nonlinearity, 1 (1988), 491–504 | DOI | MR

[14] G. Perez, S. Sinha, H. Cerdeira, Phys. Rev. E, 54 (1996), 6936–6939 | DOI

[15] W. Just, J. Stat. Phys., 79 (1995), 429–449 | DOI | MR | Zbl

[16] K. Kaneko, Physica D, 54 (1991), 5–19 | DOI | MR | Zbl

[17] V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, V. D. Shalfeev, Ustoichivost, struktury i khaos v nelineinykh setyakh sinkhronizatsii, IPF AN SSSR, Gorkii, 1989

[18] V. A. Vasilev, Yu. M. Romanovskii, V. G. Yakhno, Avtovolnovye protsessy, Nauka, M., 1987

[19] A. V. Gaponov-Grekhov (red.), Avtovolnovye protsessy v sistemakh s diffuziei, Sb. nauchn. trudov, IPF AN SSSR, Gorkii, 1981

[20] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, Matematicheskaya teoriya goreniya i vzryva, Nauka, M., 1980 | MR

[21] D. G. Aronson, H. F. Weinberger, “Nonlinear diffusion in population genetics, combustion and nerve pulse propagation”, Partial Differential Equations and Related Topics, Lect. Notes Math., 446, ed. J. A. Goldstein, Springer, Berlin, 1975, 5–49 | DOI | MR

[22] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[23] A. Yu. Loskutov, S. D. Rybalko, D. N. Udin, “Dinamika neodnorodnoi seti neavtonomnykh diffuzionno svyazannykh kusochno-lineinykh otobrazhenii”, Regulyarnaya i khaoticheskaya dinamika (to appear)

[24] A. Loskutov, S. D. Rybalko, D. N. Udin, N. V. Brilliantov, “Space-time chaos and order in nonuniform coupled map lattices”, Physica D, submitted | MR