Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 373-390
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct the class of integrable classical and quantum systems on the Hopf algebras describing $n$ interacting particles. We obtain the general structure of an integrable Hamiltonian system for the Hopf algebra $A(g)$ of a simple Lie algebra $g$ and prove that the integrals of motion depend only on linear combinations of $k$ coordinates of the phase space, $2\cdot\mathrm{ind}g\leq k\leq\mathbf g\cdot\mathrm{ind}g$, where $\mathrm{ind} g$ and $\mathbf g$ are the respective index and Coxeter number of the Lie algebra $g$. The standard procedure of $q$-deformation results in the quantum integrable system. We apply this general scheme to the algebras $sl(2)$, $sl(3)$, and $o(3,1)$. An exact solution for the quantum analogue of the $N$-dimensional Hamiltonian system on the Hopf algebra $A\bigl(sl(2)\bigr)$ is constructed using the method of noncommutative integration of linear differential equations.
			
            
            
            
          
        
      @article{TMF_2000_124_3_a1,
     author = {Ya. V. Lisitsyn and A. V. Shapovalov},
     title = {Integrable $N$-dimensional systems on the {Hopf} algebra and $q$-deformations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--390},
     publisher = {mathdoc},
     volume = {124},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a1/}
}
                      
                      
                    TY - JOUR AU - Ya. V. Lisitsyn AU - A. V. Shapovalov TI - Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 373 EP - 390 VL - 124 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a1/ LA - ru ID - TMF_2000_124_3_a1 ER -
%0 Journal Article %A Ya. V. Lisitsyn %A A. V. Shapovalov %T Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 373-390 %V 124 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a1/ %G ru %F TMF_2000_124_3_a1
Ya. V. Lisitsyn; A. V. Shapovalov. Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 373-390. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a1/
