A K\"ahler structure of the triplectic geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 355-372
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the geometry of the triplectic quantization of gauge theories. We show that the triplectic geometry is determined by the geometry of a Kähler manifold $\mathcal N$ endowed with a pair of transversal polarizations. The antibrackets can be brought to the canonical form if and only if $\mathcal N$ admits a flat symmetric connection that is compatible with the complex structure and the polarizations.
@article{TMF_2000_124_3_a0,
author = {M. A. Grigoriev and A. M. Semikhatov},
title = {A {K\"ahler} structure of the triplectic geometry},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--372},
publisher = {mathdoc},
volume = {124},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a0/}
}
M. A. Grigoriev; A. M. Semikhatov. A K\"ahler structure of the triplectic geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 3, pp. 355-372. http://geodesic.mathdoc.fr/item/TMF_2000_124_3_a0/