An integrable system related to the spherical top and the Toda chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 310-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the integrable motion over the sphere $S^2$ in the potential $V=(x_1x_2x_3)^{-2/3}$ possessing an additional integral of motion that is cubic in the momenta. We construct the Lax representation without a spectral parameter and consider the relation to the three-particle Toda chain.
@article{TMF_2000_124_2_a8,
     author = {A. V. Tsiganov},
     title = {An integrable system related to the spherical top and the {Toda} chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {310--322},
     year = {2000},
     volume = {124},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a8/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - An integrable system related to the spherical top and the Toda chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 310
EP  - 322
VL  - 124
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a8/
LA  - ru
ID  - TMF_2000_124_2_a8
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T An integrable system related to the spherical top and the Toda chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 310-322
%V 124
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a8/
%G ru
%F TMF_2000_124_2_a8
A. V. Tsiganov. An integrable system related to the spherical top and the Toda chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 310-322. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a8/

[1] L. V. Ovsyannikov, DAN SSSR, 111 (1956), 47 | MR | Zbl

[2] F. J. Dyson, J. Math. Mech., 18 (1968), 91 | Zbl

[3] S. I. Anisimov, I. I. Lysikov, PMM, 34 (1970), 926 | Zbl

[4] O. I. Bogoyavlenskii, Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | Zbl

[5] B. Gaffet, J. Fluid Mech., 325 (1996), 113 | DOI | MR | Zbl

[6] B. Gaffet, J. Phys. A, 31 (1998), 1581 ; 8341 | DOI | MR | Zbl | MR | Zbl

[7] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR | Zbl

[8] R. V. Gamkrelidze (red.), Dinamicheskie sistemy – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fund. napravleniya, 16, VINITI, M., 1987 | MR | Zbl

[9] L. D. Faddeev, G. P. Korchemsky, Phys. Lett. B, 342 (1995), 311 | DOI | MR

[10] A. V. Tsyganov, TMF, 118 (1999), 205 | DOI | MR | Zbl

[11] S. A. Chaplygin, Sobranie sochinenii, T. 1–2, Gostekhizdat, M., 1948 | MR

[12] M. Adler, P. van Moerbeke, Invent. Math., 97 (1989), 3 ; Algebraic completely integrable systems: A systematic approach, Academic Press, New York, 1993 | DOI | MR | Zbl

[13] C. Bechlivanidis, P. van Moerbeke, Commun. Math. Phys., 110 (1987), 317 | DOI | MR | Zbl

[14] P. Vanhaecke, Math. Z, 211 (1992), 265 | DOI | MR | Zbl