Gauge invariance of the Landau nonlinear damping decrement of Bose excitations in a quark–gluon plasma: Part II
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 292-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The physical mechanisms determining the nonlinear scattering of plasmons on particles of a quark–gluon plasma are analyzed. The connection between the Landau nonlinear damping decrement of longitudinal oscillations and the damping decrement derived from the hard-temperature loop approximation is investigated. The part of the decrement that depends on the gauge parameter on the mass shell is shown to be equal to zero.
@article{TMF_2000_124_2_a7,
     author = {Yu. A. Markov and M. A. Markova},
     title = {Gauge invariance of the {Landau} nonlinear damping decrement of {Bose} excitations in a quark{\textendash}gluon plasma: {Part} {II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {292--309},
     year = {2000},
     volume = {124},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a7/}
}
TY  - JOUR
AU  - Yu. A. Markov
AU  - M. A. Markova
TI  - Gauge invariance of the Landau nonlinear damping decrement of Bose excitations in a quark–gluon plasma: Part II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 292
EP  - 309
VL  - 124
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a7/
LA  - ru
ID  - TMF_2000_124_2_a7
ER  - 
%0 Journal Article
%A Yu. A. Markov
%A M. A. Markova
%T Gauge invariance of the Landau nonlinear damping decrement of Bose excitations in a quark–gluon plasma: Part II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 292-309
%V 124
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a7/
%G ru
%F TMF_2000_124_2_a7
Yu. A. Markov; M. A. Markova. Gauge invariance of the Landau nonlinear damping decrement of Bose excitations in a quark–gluon plasma: Part II. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 292-309. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a7/

[1] Yu. A. Markov, M. A. Markova, TMF, 124:1 (2000), 110 | DOI | MR | Zbl

[2] V. N. Tsytovich, Teoriya turbulentnoi plazmy, Atomizdat, M., 1971

[3] V. N. Tsytovich, Nelineinye effekty v plazme, Nauka, M., 1967

[4] U. Heinz, Phys. Rev. Lett., 51 (1983), 351 | DOI

[5] U. Heinz, Ann. Phys. (N. Y), 161 (1985), 48 | DOI

[6] S. K. Wong, Nuovo Cimento A, 65 (1970), 689 | DOI

[7] Z. Xiaofei, L. Jiarong, Phys. Rev. C, 52 (1995), 964 | DOI

[8] V. V. Pustovalov, V. P. Silin, Tr. FIAN, 61, 1972, 38

[9] E. Braaten, R. D. Pisarski, Phys. Rev. D, 42 (1990), 2156 | DOI

[10] R. Baier, G. Kunstatter, D. Schiff, Phys. Rev. D, 45 (1992), R4381 | DOI

[11] R. Baier, G. Kunstatter, D. Schiff, Nucl. Phys. B, 388 (1992), 287 | DOI

[12] V. V. Lebedev, A. V. Smilga, Ann. Phys. (N. Y), 202 (1990), 229 | DOI

[13] V. V. Lebedev, A. V. Smilga, Physica A, 181 (1992), 187 | DOI

[14] R. D. Pisarski, Phys. Rev. D, 47 (1993), 5589 | DOI

[15] A. V. Smilga, YaF, 57 (1994), 550

[16] L. M. Kovrizhnykh, ZhETF, 49 (1965), 237

[17] V. A. Liperovskii, V. N. Tsytovich, Izv. vyssh. uchebn. zaved., radiofizika, 9 (1966), 469

[18] V. A. Liperovskii, V. N. Tsytovich, Izv. vyssh. uchebn. zaved., radiofizika, 12 (1969), 823