@article{TMF_2000_124_2_a4,
author = {A. V. Shchepetilov},
title = {Two-body problem on spaces of constant curvature: {I.~Dependence} of the {Hamiltonian} on the symmetry group and the reduction of the classical system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {249--264},
year = {2000},
volume = {124},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a4/}
}
TY - JOUR AU - A. V. Shchepetilov TI - Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 249 EP - 264 VL - 124 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a4/ LA - ru ID - TMF_2000_124_2_a4 ER -
%0 Journal Article %A A. V. Shchepetilov %T Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 249-264 %V 124 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a4/ %G ru %F TMF_2000_124_2_a4
A. V. Shchepetilov. Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a4/
[1] Dzh. Volf, Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR
[2] J. Moser, Commun. Pure Appl. Math., 23 (1970), 609 | DOI | MR | Zbl
[3] Yu. S. Osipov, UMN, 27:2 (1972), 101 | MR
[4] Y. S. Osipov, Celest. Mech., 16 (1977), 191 | DOI | MR | Zbl
[5] E. A. Belbruno, Celest. Mech., 15 (1977), 467 | DOI | MR | Zbl
[6] A. V. Shchepetilov, J. Phys. A, 31 (1998), 6279 ; 32 (1999), 1531 | DOI | MR | Zbl | DOI | MR
[7] M. Ikeda, N. Katayama, Tensor, 38 (1982), 37 | MR | Zbl
[8] N. Katayama, Nuovo Cimento B, 105 (1990), 113 ; 107 (1992), 763 ; 108 (1993), 657 | DOI | MR | DOI | MR | MR
[9] Ya. I. Granovskii, A. S. Zhedanov, I. M. Lutsenko, TMF, 91 (1992), 207 ; 396 | MR | MR
[10] V. S. Otchik, “On the two Coulomb centres problem in a spherical geometry”, Proc. Intern. Workshop on Symmetry Methods in Physics, V. 2, eds. A. N. Sissakian, G. S. Pogosyan, S. I. Vinitsky, JINR, Dubna, 1994, 384 | MR
[11] V. A. Chernoivan, I. S. Mamaev, Regular and chaotic dynamics, 4:2 (1999), 112 | DOI | MR | Zbl
[12] A. V. Borisov, I. S. Mamaev, Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, Redaktsiya zhurnala “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999 | MR
[13] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[14] A. V. Schepetilov, TMF, 118 (1999), 248 | DOI | Zbl
[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR
[16] I. M. Oleinik, Mat. zametki, 55 (1994), 218 | MR
[17] A. V. Schepetilov, TMF, 109 (1996), 395 | DOI | Zbl
[18] S. Khelgason, Gruppy i geometricheskii analiz, Mir, M., 1984 | MR
[19] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1972 | MR
[20] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR | Zbl