Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 249-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of two bodies with central interaction that propagate in a simply connected space with a constant curvature and an arbitrary dimension. We obtain the explicit expression for the quantum Hamiltonian via the radial differential operator and generators of the isometry group of a configuration space. We describe the reduced classical mechanical system determined on the homogeneous space of a Lie group in terms of orbits of the coadjoint representation of this group. We describe the reduced classical two-body problem.
@article{TMF_2000_124_2_a4,
     author = {A. V. Shchepetilov},
     title = {Two-body problem on spaces of constant curvature: {I.~Dependence} of the {Hamiltonian} on the symmetry group and the reduction of the classical system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {249--264},
     year = {2000},
     volume = {124},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a4/}
}
TY  - JOUR
AU  - A. V. Shchepetilov
TI  - Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 249
EP  - 264
VL  - 124
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a4/
LA  - ru
ID  - TMF_2000_124_2_a4
ER  - 
%0 Journal Article
%A A. V. Shchepetilov
%T Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 249-264
%V 124
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a4/
%G ru
%F TMF_2000_124_2_a4
A. V. Shchepetilov. Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a4/

[1] Dzh. Volf, Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR

[2] J. Moser, Commun. Pure Appl. Math., 23 (1970), 609 | DOI | MR | Zbl

[3] Yu. S. Osipov, UMN, 27:2 (1972), 101 | MR

[4] Y. S. Osipov, Celest. Mech., 16 (1977), 191 | DOI | MR | Zbl

[5] E. A. Belbruno, Celest. Mech., 15 (1977), 467 | DOI | MR | Zbl

[6] A. V. Shchepetilov, J. Phys. A, 31 (1998), 6279 ; 32 (1999), 1531 | DOI | MR | Zbl | DOI | MR

[7] M. Ikeda, N. Katayama, Tensor, 38 (1982), 37 | MR | Zbl

[8] N. Katayama, Nuovo Cimento B, 105 (1990), 113 ; 107 (1992), 763 ; 108 (1993), 657 | DOI | MR | DOI | MR | MR

[9] Ya. I. Granovskii, A. S. Zhedanov, I. M. Lutsenko, TMF, 91 (1992), 207 ; 396 | MR | MR

[10] V. S. Otchik, “On the two Coulomb centres problem in a spherical geometry”, Proc. Intern. Workshop on Symmetry Methods in Physics, V. 2, eds. A. N. Sissakian, G. S. Pogosyan, S. I. Vinitsky, JINR, Dubna, 1994, 384 | MR

[11] V. A. Chernoivan, I. S. Mamaev, Regular and chaotic dynamics, 4:2 (1999), 112 | DOI | MR | Zbl

[12] A. V. Borisov, I. S. Mamaev, Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, Redaktsiya zhurnala “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999 | MR

[13] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[14] A. V. Schepetilov, TMF, 118 (1999), 248 | DOI | Zbl

[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[16] I. M. Oleinik, Mat. zametki, 55 (1994), 218 | MR

[17] A. V. Schepetilov, TMF, 109 (1996), 395 | DOI | Zbl

[18] S. Khelgason, Gruppy i geometricheskii analiz, Mir, M., 1984 | MR

[19] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1972 | MR

[20] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR | Zbl