Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 227-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For every finite-dimensional nilpotent complex Lie algebra or superalgebra $\mathfrak n$, we offer three algorithms for realizing it in terms of creation and annihilation operators. We use these algorithms to realize Lie algebras with a maximal subalgebra of finite codimension. For a simple finite-dimensional $\mathfrak g$ whose maximal nilpotent subalgebra is $\mathfrak n$, this gives its realization in terms of first-order differential operators on the big open cell of the flag manifold corresponding to the negative roots of $\mathfrak g$. For several examples, we executed the algorithms using the MATHEMATICA-based package SUPERLie. These realizations form a preparatory step in an explicit construction and description of an interesting new class of simple Lie (super)algebras of polynomial growth, generalizations of the Lie algebra of matrices of complex size.
@article{TMF_2000_124_2_a2,
     author = {\v{C}. Burd{\'\i}k and P. Ya. Grozman and D. A. Leites and A. N. Sergeev},
     title = {Realization of {Lie} algebras and superalgebras in terms of creation and annihilation operators: {I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {227--238},
     year = {2000},
     volume = {124},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/}
}
TY  - JOUR
AU  - Č. Burdík
AU  - P. Ya. Grozman
AU  - D. A. Leites
AU  - A. N. Sergeev
TI  - Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 227
EP  - 238
VL  - 124
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/
LA  - ru
ID  - TMF_2000_124_2_a2
ER  - 
%0 Journal Article
%A Č. Burdík
%A P. Ya. Grozman
%A D. A. Leites
%A A. N. Sergeev
%T Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 227-238
%V 124
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/
%G ru
%F TMF_2000_124_2_a2
Č. Burdík; P. Ya. Grozman; D. A. Leites; A. N. Sergeev. Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/

[1] D. Leites, A. Sergeev, Orthogonal polynomials of discrete variable and Lie algebras of complex size matrices. The talk at the conference at MPI, Bonn, in the memory of Misha Saveliev, Preprint MPI-1999-44, MPI, Bonn, 1999 ; www.mpim-bonn.mpg.de | MR

[2] A. Klein, E. Marshalek, Rev. Mod. Phys., 63:2 (1991), 375–558 | DOI | MR

[3] A. Simoni, F. Zaccaria, Nuovo Cimento A (10), 59 (1969), 280–292 | DOI | MR | Zbl

[4] M. Günaydin, C. Saçlioğlu, Phys. Lett. B, 108:3 (1982), 180–186 ; Commun. Math. Phys., 87:2 (1982/83), 159–179 ; I. Bars, M. Günaydin, Commun. Math. Phys., 91:1 (1983), 31–51 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[5] Yu. F. Smirnov, V. N. Tolstoy, M. Havlíček, Č. Burdík, A. A. Sakharuk, “The Dyson-type boson realizations for representations of the semisimple Lie algebras and superalgebras”, Group Theoretical Methods in Physics, V. 1–3, eds. M. A. Markov, V. I. Man'ko, A. E. Shabad, Harwood Academic Publ., Chur, 1985, 67–76 | MR

[6] J. Beckers, Y. Brihaye, N. Debergh, On realizations of nonlinear Lie algebras by differential operators, E-print hep-th/9803253 | MR

[7] M. Shifman, A. Turbiner, Phys. Rev. A, 59 (1999), 1791 ; E-print hep-th/9806006 | DOI | MR

[8] M. Kashiwara, Asterisque, 173–174, 1989, 55–110 | MR

[9] M. Havlíček, W. Lassner, Rep. Math. Phys., 12:1 (1977), 1–8 | DOI | MR | Zbl

[10] M. Havlíček, W. Lassner, Int. J. Theor. Phys., 15:11 (1976), 867–876 | DOI | MR

[11] M. Havliček, W. Lassner, Rep. Math. Phys., 8:3 (1975), 391–399 ; 9:2 (1976), 177–185 | DOI | MR | Zbl | DOI | Zbl

[12] Č. Burdík, J. Phys. A, 18:16 (1985), 3101–3111 | DOI | MR | Zbl

[13] Č. Burdík, Czech. J. Phys. B, 36:11 (1986), 1235–1241 | DOI | MR

[14] Č. Burdík, J. Phys. A, 19:13 (1986), 2465–2471 | DOI | MR | Zbl

[15] Č. Burdík, J. Phys. A, 21:2 (1988), 289–295 | DOI | MR | Zbl

[16] P. Bouwknegt, J. McCarthy, K. Pilch, Commun. Math. Phys., 131 (1990), 339–368 | DOI | MR

[17] P. Cohen, Yu. Manin, D. Zagier, “Automorphic pseudodifferential operators Algebraic aspects of integrable systems”, In memory of Irene Dorfman, Progr. Nonlinear Differential Equations Appl., 26, eds. A. S. Fokas et al., Birkhauser Boston, Boston, MA, 1997, 17–47 | MR | Zbl

[18] P. B. A. Lecomte, V. Yu. Ovsienko, Projectively equivariant symbol calculus, E-print math.DG/9809061 | MR

[19] C. Duval, P. Lecomte, V. Ovsienko, Conformally equivariant quantization: Existence and uniqueness, E-print math.DG/9902032 | MR

[20] P. Grozman, D. Leites, “Lie superalgebras of supermatrices of complex size. Their generalizations and related integrable systems”, Proc. International Symposium on Complex Analysis and Related Topics (Cuernavaca, Mexica, November 18–22, 1996), eds. R. De Arellano et al., Birkhäuser, Basel, 1999, 73–105 | MR

[21] J. Blank, M. Havlíček, M. Bednář, W. Lassner, Czech. J. Phys. B, 31:11 (1981), 1286–1301 | DOI | MR

[22] J. Blank, M. Havlíček, P. Exner, W. Lassner, J. Math. Phys., 23:3 (1982), 350–353 | DOI | MR | Zbl

[23] J. Blank, M. Havlíček, M. Bednář, W. Lassner, Czech. J. Phys. B, 32:6 (1982), 615–616 | DOI | MR

[24] Č. Burdík, P. Exner, M. Havlíček, Czech. J. Phys. B, 31:5 (1981), 459–469 | DOI | MR

[25] P. Exner, M. Havlíček, W. Lassner, “Boson representations of classical Lie algebras”, Proceedings of the International Conference on Operator Algebras, Ideals, and their Applications in Theoretical Physics (Leipzig, 1977), Teubner, Leipzig, 1978, 277–278 | MR

[26] P. Exner, M. Havlíček, W. Lassner, Czech. J. Phys. B, 26:11 (1976), 1213–1228 | DOI | MR | Zbl

[27] M. Havlíček, P. Exner, Ann. Inst. H. Poincaré. Sect. A (N. S), 23:4 (1975), 335–347 ; Czech. J. Phys. B, 28:9 (1978), 949–962 | MR | Zbl | DOI | MR

[28] M. Havlíček, P. Exner, Ann. Inst. H. Poincaré. Sect. A (N. S), 23:4 (1975), 313–333 ; 1213–1228 | Zbl | MR

[29] Č. Burdík, O. Navrátil, M. Thoma, Czech. J. Phys., 43:7 (1993), 697–703 | DOI | MR

[30] P. Grozman, D. Leites, “Mathematica-aided study of Lie algebras and their cohomology. From supergravity to ballbearings and magnetic hydrodynamics”, The Second International Mathematica Symposium, ed. V. Keränen, Computation Mechanics, Southampton–Boston, 1997, 185–192 | Zbl

[31] A. Joseph, “Realizations in classical and quantum mechanics”, Group theoretical methods in physics, Proc. Third Internat. Colloq., V. 1 (Centre Phys. Théor., Marseille, 1974), eds. H. Bacry, A. Grossmann, Centre Nat. Recherche Sci., Centre Phys. Théor., Marseille, 1974, 227–236 | MR

[32] Zh. Diksme, Universalnye obertyvayuschie algebry, Mir, M., 1997 | MR

[33] D. Leites, E. Poletaeva, Math. Scand., 81:1 (1997), 5–19 | DOI | MR | Zbl