@article{TMF_2000_124_2_a2,
author = {\v{C}. Burd{\'\i}k and P. Ya. Grozman and D. A. Leites and A. N. Sergeev},
title = {Realization of {Lie} algebras and superalgebras in terms of creation and annihilation operators: {I}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {227--238},
year = {2000},
volume = {124},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/}
}
TY - JOUR AU - Č. Burdík AU - P. Ya. Grozman AU - D. A. Leites AU - A. N. Sergeev TI - Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 227 EP - 238 VL - 124 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/ LA - ru ID - TMF_2000_124_2_a2 ER -
%0 Journal Article %A Č. Burdík %A P. Ya. Grozman %A D. A. Leites %A A. N. Sergeev %T Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 227-238 %V 124 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/ %G ru %F TMF_2000_124_2_a2
Č. Burdík; P. Ya. Grozman; D. A. Leites; A. N. Sergeev. Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/
[1] D. Leites, A. Sergeev, Orthogonal polynomials of discrete variable and Lie algebras of complex size matrices. The talk at the conference at MPI, Bonn, in the memory of Misha Saveliev, Preprint MPI-1999-44, MPI, Bonn, 1999 ; www.mpim-bonn.mpg.de | MR
[2] A. Klein, E. Marshalek, Rev. Mod. Phys., 63:2 (1991), 375–558 | DOI | MR
[3] A. Simoni, F. Zaccaria, Nuovo Cimento A (10), 59 (1969), 280–292 | DOI | MR | Zbl
[4] M. Günaydin, C. Saçlioğlu, Phys. Lett. B, 108:3 (1982), 180–186 ; Commun. Math. Phys., 87:2 (1982/83), 159–179 ; I. Bars, M. Günaydin, Commun. Math. Phys., 91:1 (1983), 31–51 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[5] Yu. F. Smirnov, V. N. Tolstoy, M. Havlíček, Č. Burdík, A. A. Sakharuk, “The Dyson-type boson realizations for representations of the semisimple Lie algebras and superalgebras”, Group Theoretical Methods in Physics, V. 1–3, eds. M. A. Markov, V. I. Man'ko, A. E. Shabad, Harwood Academic Publ., Chur, 1985, 67–76 | MR
[6] J. Beckers, Y. Brihaye, N. Debergh, On realizations of nonlinear Lie algebras by differential operators, E-print hep-th/9803253 | MR
[7] M. Shifman, A. Turbiner, Phys. Rev. A, 59 (1999), 1791 ; E-print hep-th/9806006 | DOI | MR
[8] M. Kashiwara, Asterisque, 173–174, 1989, 55–110 | MR
[9] M. Havlíček, W. Lassner, Rep. Math. Phys., 12:1 (1977), 1–8 | DOI | MR | Zbl
[10] M. Havlíček, W. Lassner, Int. J. Theor. Phys., 15:11 (1976), 867–876 | DOI | MR
[11] M. Havliček, W. Lassner, Rep. Math. Phys., 8:3 (1975), 391–399 ; 9:2 (1976), 177–185 | DOI | MR | Zbl | DOI | Zbl
[12] Č. Burdík, J. Phys. A, 18:16 (1985), 3101–3111 | DOI | MR | Zbl
[13] Č. Burdík, Czech. J. Phys. B, 36:11 (1986), 1235–1241 | DOI | MR
[14] Č. Burdík, J. Phys. A, 19:13 (1986), 2465–2471 | DOI | MR | Zbl
[15] Č. Burdík, J. Phys. A, 21:2 (1988), 289–295 | DOI | MR | Zbl
[16] P. Bouwknegt, J. McCarthy, K. Pilch, Commun. Math. Phys., 131 (1990), 339–368 | DOI | MR
[17] P. Cohen, Yu. Manin, D. Zagier, “Automorphic pseudodifferential operators Algebraic aspects of integrable systems”, In memory of Irene Dorfman, Progr. Nonlinear Differential Equations Appl., 26, eds. A. S. Fokas et al., Birkhauser Boston, Boston, MA, 1997, 17–47 | MR | Zbl
[18] P. B. A. Lecomte, V. Yu. Ovsienko, Projectively equivariant symbol calculus, E-print math.DG/9809061 | MR
[19] C. Duval, P. Lecomte, V. Ovsienko, Conformally equivariant quantization: Existence and uniqueness, E-print math.DG/9902032 | MR
[20] P. Grozman, D. Leites, “Lie superalgebras of supermatrices of complex size. Their generalizations and related integrable systems”, Proc. International Symposium on Complex Analysis and Related Topics (Cuernavaca, Mexica, November 18–22, 1996), eds. R. De Arellano et al., Birkhäuser, Basel, 1999, 73–105 | MR
[21] J. Blank, M. Havlíček, M. Bednář, W. Lassner, Czech. J. Phys. B, 31:11 (1981), 1286–1301 | DOI | MR
[22] J. Blank, M. Havlíček, P. Exner, W. Lassner, J. Math. Phys., 23:3 (1982), 350–353 | DOI | MR | Zbl
[23] J. Blank, M. Havlíček, M. Bednář, W. Lassner, Czech. J. Phys. B, 32:6 (1982), 615–616 | DOI | MR
[24] Č. Burdík, P. Exner, M. Havlíček, Czech. J. Phys. B, 31:5 (1981), 459–469 | DOI | MR
[25] P. Exner, M. Havlíček, W. Lassner, “Boson representations of classical Lie algebras”, Proceedings of the International Conference on Operator Algebras, Ideals, and their Applications in Theoretical Physics (Leipzig, 1977), Teubner, Leipzig, 1978, 277–278 | MR
[26] P. Exner, M. Havlíček, W. Lassner, Czech. J. Phys. B, 26:11 (1976), 1213–1228 | DOI | MR | Zbl
[27] M. Havlíček, P. Exner, Ann. Inst. H. Poincaré. Sect. A (N. S), 23:4 (1975), 335–347 ; Czech. J. Phys. B, 28:9 (1978), 949–962 | MR | Zbl | DOI | MR
[28] M. Havlíček, P. Exner, Ann. Inst. H. Poincaré. Sect. A (N. S), 23:4 (1975), 313–333 ; 1213–1228 | Zbl | MR
[29] Č. Burdík, O. Navrátil, M. Thoma, Czech. J. Phys., 43:7 (1993), 697–703 | DOI | MR
[30] P. Grozman, D. Leites, “Mathematica-aided study of Lie algebras and their cohomology. From supergravity to ballbearings and magnetic hydrodynamics”, The Second International Mathematica Symposium, ed. V. Keränen, Computation Mechanics, Southampton–Boston, 1997, 185–192 | Zbl
[31] A. Joseph, “Realizations in classical and quantum mechanics”, Group theoretical methods in physics, Proc. Third Internat. Colloq., V. 1 (Centre Phys. Théor., Marseille, 1974), eds. H. Bacry, A. Grossmann, Centre Nat. Recherche Sci., Centre Phys. Théor., Marseille, 1974, 227–236 | MR
[32] Zh. Diksme, Universalnye obertyvayuschie algebry, Mir, M., 1997 | MR
[33] D. Leites, E. Poletaeva, Math. Scand., 81:1 (1997), 5–19 | DOI | MR | Zbl