Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 227-238

Voir la notice de l'article provenant de la source Math-Net.Ru

For every finite-dimensional nilpotent complex Lie algebra or superalgebra $\mathfrak n$, we offer three algorithms for realizing it in terms of creation and annihilation operators. We use these algorithms to realize Lie algebras with a maximal subalgebra of finite codimension. For a simple finite-dimensional $\mathfrak g$ whose maximal nilpotent subalgebra is $\mathfrak n$, this gives its realization in terms of first-order differential operators on the big open cell of the flag manifold corresponding to the negative roots of $\mathfrak g$. For several examples, we executed the algorithms using the MATHEMATICA-based package SUPERLie. These realizations form a preparatory step in an explicit construction and description of an interesting new class of simple Lie (super)algebras of polynomial growth, generalizations of the Lie algebra of matrices of complex size.
@article{TMF_2000_124_2_a2,
     author = {\v{C}. Burd{\'\i}k and P. Ya. Grozman and D. A. Leites and A. N. Sergeev},
     title = {Realization of {Lie} algebras and superalgebras in terms of creation and annihilation operators: {I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {227--238},
     publisher = {mathdoc},
     volume = {124},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/}
}
TY  - JOUR
AU  - Č. Burdík
AU  - P. Ya. Grozman
AU  - D. A. Leites
AU  - A. N. Sergeev
TI  - Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 227
EP  - 238
VL  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/
LA  - ru
ID  - TMF_2000_124_2_a2
ER  - 
%0 Journal Article
%A Č. Burdík
%A P. Ya. Grozman
%A D. A. Leites
%A A. N. Sergeev
%T Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 227-238
%V 124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/
%G ru
%F TMF_2000_124_2_a2
Č. Burdík; P. Ya. Grozman; D. A. Leites; A. N. Sergeev. Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a2/