Hydrodynamic profiles and constants of motion from $d$-branes
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 215-226

Voir la notice de l'article provenant de la source Math-Net.Ru

Various hydrodynamic systems, governed by nonlinear differential equations, have a hidden higher-dimensional dynamic Poincaré symmetry because the governing equations descend from a Nambu–Goto action. For the same reason, there are also equivalence transformations between different models. We discuss these interconnections and summarize them in a simple diagram.
@article{TMF_2000_124_2_a1,
     author = {R. Jackiw},
     title = {Hydrodynamic profiles and constants of motion from $d$-branes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {215--226},
     publisher = {mathdoc},
     volume = {124},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a1/}
}
TY  - JOUR
AU  - R. Jackiw
TI  - Hydrodynamic profiles and constants of motion from $d$-branes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 215
EP  - 226
VL  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a1/
LA  - ru
ID  - TMF_2000_124_2_a1
ER  - 
%0 Journal Article
%A R. Jackiw
%T Hydrodynamic profiles and constants of motion from $d$-branes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 215-226
%V 124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a1/
%G ru
%F TMF_2000_124_2_a1
R. Jackiw. Hydrodynamic profiles and constants of motion from $d$-branes. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 215-226. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a1/