Hydrodynamic profiles and constants of motion from $d$-branes
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 215-226
Voir la notice de l'article provenant de la source Math-Net.Ru
Various hydrodynamic systems, governed by nonlinear differential equations, have a hidden higher-dimensional dynamic Poincaré symmetry because the governing equations descend from a Nambu–Goto action. For the same reason, there are also equivalence transformations between different models. We discuss these interconnections and summarize them in a simple diagram.
@article{TMF_2000_124_2_a1,
author = {R. Jackiw},
title = {Hydrodynamic profiles and constants of motion from $d$-branes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {215--226},
publisher = {mathdoc},
volume = {124},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a1/}
}
R. Jackiw. Hydrodynamic profiles and constants of motion from $d$-branes. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 2, pp. 215-226. http://geodesic.mathdoc.fr/item/TMF_2000_124_2_a1/