Adelic Feynman amplitudes in lower orders of perturbation theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 95-109
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate convergency conditions for adelic Feynman amplitudes and prove that for spaces of sufficiently high dimension, there exists a nonempty domain in the space of powers of propagators in which the adelic amplitude is correctly defined. We investigate an analytic continuation w.r.t. the power of propagators in amplitudes of the $\varphi^4$ theory in the third and fourth order of the perturbation theory. We demonstrate that these amplitudes cannot be continued to the whole complex plane (assuming the validity of the Riemann hypothesis about zeros of the zeta-function) and physically meaningful values of the propagator powers lie at the boundary of the analyticity domain.
@article{TMF_2000_124_1_a6,
     author = {\'E. Yu. Lerner and M. D. Missarov},
     title = {Adelic {Feynman} amplitudes in lower orders of perturbation theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {95--109},
     year = {2000},
     volume = {124},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a6/}
}
TY  - JOUR
AU  - É. Yu. Lerner
AU  - M. D. Missarov
TI  - Adelic Feynman amplitudes in lower orders of perturbation theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 95
EP  - 109
VL  - 124
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a6/
LA  - ru
ID  - TMF_2000_124_1_a6
ER  - 
%0 Journal Article
%A É. Yu. Lerner
%A M. D. Missarov
%T Adelic Feynman amplitudes in lower orders of perturbation theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 95-109
%V 124
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a6/
%G ru
%F TMF_2000_124_1_a6
É. Yu. Lerner; M. D. Missarov. Adelic Feynman amplitudes in lower orders of perturbation theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 95-109. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a6/

[1] I. V. Volovich, TMF, 71 (1987), 337–340 | MR | Zbl

[2] E. Yu. Lerner, M. D. Missarov, Commun. Math. Phys., 121 (1989), 35–48 | DOI | MR | Zbl

[3] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[4] L. Brekke, P. G. O. Freund, Phys. Rep., 233:1 (1993), 2–66 | DOI | MR

[5] Yu. I. Manin, “Reflections on Arithmetical Physics”, Conformal Invariance and String Theory, eds. P. Dita, V. Gergescu, Academic Press, Boston, 1989, 293–303 | DOI | MR

[6] P. G. O. Freund, E. Witten, Phys. Lett. B, 199 (1987), 191–194 | DOI | MR

[7] V. S. Vladimirov, UMN, 48:6 (1993), 3–38 | MR | Zbl

[8] M. D. Missarov, Phys. Lett. B, 272 (1991), 36–38 | DOI | MR

[9] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Obobschennye funktsii. Vyp. 6, Nauka, M., 1966 | MR

[10] M. D. Missarov, Ann. Inst. H. Poincaré, 49 (1989), 357–367 | MR

[11] M. D. Missarov, “Renormalization group and renormalization theory in $p$-adic and adelic scalar models”, Dynamical Systems and Statistical Mechanics, Adv. Sov. Math., 3, ed. Ya. G. Sinai, Amer. Math. Soc., Providence, RI, 1991, 143–161 | MR

[12] O. I. Zavyalov, Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[13] V. A. Smirnov, Perenormirovka i asimptoticheskie razlozheniya feinmanovskikh amplitud, Izd-vo MGU, M., 1990 | MR

[14] E. Yu. Lerner, TMF, 102:3 (1995), 367–377 | MR | Zbl

[15] E. Yu. Lerner, TMF, 104:3 (1995), 371–392 | MR | Zbl

[16] E. R. Speer, Ann. Inst. H. Poincaré, 23 (1973), 1–21 | MR

[17] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1953 | MR