Canonical transformations of the extended phase space and integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 72-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the explicit construction of a canonical transformation of the time variable and the Hamiltonian whereby a given completely integrable system is mapped into another integrable system. The change of time induces a transformation of the equations of motion and of their solutions, the integrals of motion, the methods of separation of variables, the Lax matrices, and the corresponding $r$-matrices. For several specific families of integrable systems (Toda chains, Holt systems, and Stäckel-type systems), we construct canonical transformations of time in the extended phase space that preserve the integrability property.
@article{TMF_2000_124_1_a5,
author = {A. V. Tsiganov},
title = {Canonical transformations of the extended phase space and integrable systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {72--94},
publisher = {mathdoc},
volume = {124},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a5/}
}
TY - JOUR AU - A. V. Tsiganov TI - Canonical transformations of the extended phase space and integrable systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 72 EP - 94 VL - 124 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a5/ LA - ru ID - TMF_2000_124_1_a5 ER -
A. V. Tsiganov. Canonical transformations of the extended phase space and integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 72-94. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a5/