Canonical transformations of the extended phase space and integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 72-94

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the explicit construction of a canonical transformation of the time variable and the Hamiltonian whereby a given completely integrable system is mapped into another integrable system. The change of time induces a transformation of the equations of motion and of their solutions, the integrals of motion, the methods of separation of variables, the Lax matrices, and the corresponding $r$-matrices. For several specific families of integrable systems (Toda chains, Holt systems, and Stäckel-type systems), we construct canonical transformations of time in the extended phase space that preserve the integrability property.
@article{TMF_2000_124_1_a5,
     author = {A. V. Tsiganov},
     title = {Canonical transformations of the extended phase space and integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {72--94},
     publisher = {mathdoc},
     volume = {124},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a5/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Canonical transformations of the extended phase space and integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 72
EP  - 94
VL  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a5/
LA  - ru
ID  - TMF_2000_124_1_a5
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Canonical transformations of the extended phase space and integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 72-94
%V 124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a5/
%G ru
%F TMF_2000_124_1_a5
A. V. Tsiganov. Canonical transformations of the extended phase space and integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 72-94. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a5/