Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 62-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a second-order $2N$-component integrable system (with arbitrary $N$) whose spectral parameter lies on a curve of genus $g=1+(N-3)2^{N-2}$. The odd-order flows admit $N$-component reductions, which for $N=3$ coincide with the odd-order flows of the hierarchy of the Landau–Lifshitz equation.
@article{TMF_2000_124_1_a4,
     author = {I. Z. Golubchik and V. V. Sokolov},
     title = {Multicomponent generalization of the hierarchy of the {Landau{\textendash}Lifshitz} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {62--71},
     year = {2000},
     volume = {124},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a4/}
}
TY  - JOUR
AU  - I. Z. Golubchik
AU  - V. V. Sokolov
TI  - Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 62
EP  - 71
VL  - 124
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a4/
LA  - ru
ID  - TMF_2000_124_1_a4
ER  - 
%0 Journal Article
%A I. Z. Golubchik
%A V. V. Sokolov
%T Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 62-71
%V 124
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a4/
%G ru
%F TMF_2000_124_1_a4
I. Z. Golubchik; V. V. Sokolov. Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 62-71. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a4/

[1] A. Degasperis, F. Calogero, Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform, Preprint No 151, Instituto di Fisica, Univ. di Roma, Roma, 1979 | MR

[2] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, J. Phys. A, 16 (1983), 221–236 | DOI | MR | Zbl

[3] E. K. Sklyanin, O polnoi integriruemosti uravneniya Landau–Lifshitsa, Preprint LOMI No E-3, LOMI, L., 1979

[4] A. E. Borovik, Pisma v ZhETF, 28:10 (1978), 629–632

[5] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[6] L. A. Bordag, A. B. Yanovski, J. Phys. A, 28 (1995), 4007–4013 | DOI | MR | Zbl

[7] I. Z. Golubchik, V. V. Sokolov, TMF, 120:2 (1999), 248–255 | DOI | MR | Zbl

[8] S. V. Manakov, ZhETF, 65 (1973), 505–516

[9] S. I. Svinolupov, V. V. Sokolov, TMF, 100:2 (1994), 214–218 | MR | Zbl

[10] I. Z. Golubchik, V. V. Sokolov, TMF, 112:3 (1997), 375–383 | DOI | MR | Zbl

[11] V. G. Drinfeld, V. V. Sokolov, “Algebra Li i uravneniya tipa Kortevega-de Friza”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 24, ed. R. V. Gamkrelidze, VINITI, M., 1984, 81–180 | MR

[12] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Zap. nauchn. semin. LOMI, 150, 1986, 104–118

[13] I. T. Habibullin, V. V. Sokolov, R. I. Yamilov, “Multi-component integrable systems and nonassociative structures”, Nonlinear physics: Theory and Experiment, eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Sci. Publ., Singapore, 1996, 139–168 | MR | Zbl