Discretizations of the Landau–Lifshits equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 48-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relation between the Sklyanin chain and the Bдcklund transformations for the Landau–Lifshits equation is established. The stationary solutions of the chain determine an integrable mapping, which is a kind of classical Heisenberg spin chain. Some multifield generalizations are found.
@article{TMF_2000_124_1_a3,
     author = {V. E. Adler},
     title = {Discretizations of the {Landau{\textendash}Lifshits} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {48--61},
     year = {2000},
     volume = {124},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a3/}
}
TY  - JOUR
AU  - V. E. Adler
TI  - Discretizations of the Landau–Lifshits equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 48
EP  - 61
VL  - 124
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a3/
LA  - ru
ID  - TMF_2000_124_1_a3
ER  - 
%0 Journal Article
%A V. E. Adler
%T Discretizations of the Landau–Lifshits equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 48-61
%V 124
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a3/
%G ru
%F TMF_2000_124_1_a3
V. E. Adler. Discretizations of the Landau–Lifshits equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 48-61. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a3/

[1] E. K. Sklyanin, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[2] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[3] A. B. Shabat, R. I. Yamilov, Faktorizatsiya nelineinykh uravnenii tipa modeli Geizenberga, Preprint Bashkirskogo filiala AN SSSR, Izd-vo Bashkirskogo filiala AN SSSR, Ufa, 1987

[4] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR

[5] O. Ragnisco, P. M. Santini, Inverse Problems, 6 (1990), 441–452 | DOI | MR | Zbl

[6] A. I. Bobenko, “Discrete integrable systems and geometry”, Proc. of the 12 Int. Congress of Math. Phys.'97 (Brisbane, Australia, July 1997), eds. D. De Wit, A. J. Bracken, M. D. Gould, P. A. Pearce, International Press, Boston, 1999, 219–226 | MR | Zbl

[7] A. I. Bobenko, Yu. B. Suris, Commun. Math. Phys., 204 (1999), 147–188 | DOI | MR | Zbl

[8] A. V. Mikhailov, A. B. Shabat, Phys. Lett. A, 116:4 (1986), 191–194 | DOI | MR

[9] Ya. I. Granovskii, A. S. Zhedanov, TMF, 71:1 (1987), 143–153 | MR

[10] A. P. Veselov, TMF, 71:1 (1987), 154–159 | MR

[11] A. P. Veselov, UMN, 46:5 (1991), 3–45 | MR

[12] A. P. Veselov, DAN SSSR, 270:5 (1983), 1094–1097 | MR

[13] V. E. Adler, A. B. Shabat, TMF, 112:2 (1997), 179–194 | DOI | MR | Zbl

[14] V. G. Marikhin, A. B. Shabat, TMF, 118:2 (1999), 217–228 | DOI | MR | Zbl

[15] I. Z. Golubchik, V. V. Sokolov, TMF, 124:1 (2000), 62–71 | DOI | MR | Zbl

[16] S. I. Svinolupov, Commun. Math. Phys., 143 (1992), 559–575 | DOI | MR | Zbl

[17] V. E. Adler, S. I. Svinolupov, R. I. Yamilov, Phys. Lett. A, 254 (1999), 24–36 | DOI | MR | Zbl