Multidimensional analogues of the geometric $s\leftrightarrow t$ duality
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 169-176
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Customarily, the $s\leftrightarrow t$ duality property for scattering amplitudes, e.g., for the Veneziano amplitude, is naturally related to two-dimensional geometry. Saito and the author previously proposed a simple geometric construction of such amplitudes. Here, we construct analogues of one such amplitude related to multidimensional Euclidean spaces; the three-dimensional case is discussed in detail. The result is a variant of the Regge calculus closely related to integrable models.
@article{TMF_2000_124_1_a10,
     author = {I. G. Korepanov},
     title = {Multidimensional analogues of the geometric $s\leftrightarrow t$ duality},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {169--176},
     year = {2000},
     volume = {124},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Multidimensional analogues of the geometric $s\leftrightarrow t$ duality
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 169
EP  - 176
VL  - 124
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/
LA  - ru
ID  - TMF_2000_124_1_a10
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Multidimensional analogues of the geometric $s\leftrightarrow t$ duality
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 169-176
%V 124
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/
%G ru
%F TMF_2000_124_1_a10
I. G. Korepanov. Multidimensional analogues of the geometric $s\leftrightarrow t$ duality. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 169-176. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/

[1] A. E. Kennelly, Electrical World and Engineer, 34 (1899), 413–414

[2] R. M. Kashaev, On discrete $3$-dimensional equations associated with the local Yang–Baxter relation, Preprint ENSLAPP-L-569/95, ENS-Lyon, Lyon, 1995 ; E-print solv-int/9512005 | MR

[3] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, TMF, 117:3 (1998), 370–384 | DOI | MR | Zbl

[4] I. G. Korepanov, Zap. nauchn. semin. POMI, 215, 1994, 178–196

[5] I. G. Korepanov, Algebraic integrable systems, $(2+1)$-dimensional models in wholly discrete space-time, and inhomogeneous models in $2$-dimensional statistical physics, E-print solv-int/9506003

[6] I. G. Korepanov, S. Saito, TMF, 120:1 (1999), 54–63 | DOI | MR | Zbl

[7] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, T. 1, Mir, M., 1990 | MR | Zbl

[8] M. Berzhe, Geometriya, T. 1, 2, Mir, M., 1984 | MR

[9] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, T. 3, Mir, M., 1977 | MR

[10] I. G. Korepanov, The tetrahedral analog of Veneziano amplitude, E-print solv-int/9904005