Multidimensional analogues of the geometric $s\leftrightarrow t$ duality
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 169-176
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Customarily, the $s\leftrightarrow t$ duality property for scattering amplitudes, e.g., for the Veneziano amplitude, is naturally related to two-dimensional geometry. Saito and the author previously proposed a simple geometric construction of such amplitudes. Here, we construct analogues of one such amplitude related to multidimensional Euclidean spaces; the three-dimensional case is discussed in detail. The result is a variant of the Regge calculus closely related to integrable models.
			
            
            
            
          
        
      @article{TMF_2000_124_1_a10,
     author = {I. G. Korepanov},
     title = {Multidimensional analogues of the geometric $s\leftrightarrow t$ duality},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {169--176},
     publisher = {mathdoc},
     volume = {124},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/}
}
                      
                      
                    TY - JOUR AU - I. G. Korepanov TI - Multidimensional analogues of the geometric $s\leftrightarrow t$ duality JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 169 EP - 176 VL - 124 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/ LA - ru ID - TMF_2000_124_1_a10 ER -
I. G. Korepanov. Multidimensional analogues of the geometric $s\leftrightarrow t$ duality. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 169-176. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/
