@article{TMF_2000_124_1_a10,
author = {I. G. Korepanov},
title = {Multidimensional analogues of the geometric $s\leftrightarrow t$ duality},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {169--176},
year = {2000},
volume = {124},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/}
}
I. G. Korepanov. Multidimensional analogues of the geometric $s\leftrightarrow t$ duality. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 169-176. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a10/
[1] A. E. Kennelly, Electrical World and Engineer, 34 (1899), 413–414
[2] R. M. Kashaev, On discrete $3$-dimensional equations associated with the local Yang–Baxter relation, Preprint ENSLAPP-L-569/95, ENS-Lyon, Lyon, 1995 ; E-print solv-int/9512005 | MR
[3] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, TMF, 117:3 (1998), 370–384 | DOI | MR | Zbl
[4] I. G. Korepanov, Zap. nauchn. semin. POMI, 215, 1994, 178–196
[5] I. G. Korepanov, Algebraic integrable systems, $(2+1)$-dimensional models in wholly discrete space-time, and inhomogeneous models in $2$-dimensional statistical physics, E-print solv-int/9506003
[6] I. G. Korepanov, S. Saito, TMF, 120:1 (1999), 54–63 | DOI | MR | Zbl
[7] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, T. 1, Mir, M., 1990 | MR | Zbl
[8] M. Berzhe, Geometriya, T. 1, 2, Mir, M., 1984 | MR
[9] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, T. 3, Mir, M., 1977 | MR
[10] I. G. Korepanov, The tetrahedral analog of Veneziano amplitude, E-print solv-int/9904005