Ginzburg--Landau vortex analogues
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 18-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a static one-dimensional Ginzburg–Landau equation (on a line segment or a circle) involving a large parameter $\lambda$. We show that as $\lambda\to\infty$, there exist solutions whose asymptotic behavior resembles the behavior of the two-dimensional vortex solutions.
@article{TMF_2000_124_1_a1,
     author = {A. V. Domrin},
     title = {Ginzburg--Landau vortex analogues},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--35},
     publisher = {mathdoc},
     volume = {124},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Ginzburg--Landau vortex analogues
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 18
EP  - 35
VL  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/
LA  - ru
ID  - TMF_2000_124_1_a1
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Ginzburg--Landau vortex analogues
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 18-35
%V 124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/
%G ru
%F TMF_2000_124_1_a1
A. V. Domrin. Ginzburg--Landau vortex analogues. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 18-35. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/