Ginzburg–Landau vortex analogues
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 18-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a static one-dimensional Ginzburg–Landau equation (on a line segment or a circle) involving a large parameter $\lambda$. We show that as $\lambda\to\infty$, there exist solutions whose asymptotic behavior resembles the behavior of the two-dimensional vortex solutions.
@article{TMF_2000_124_1_a1,
     author = {A. V. Domrin},
     title = {Ginzburg{\textendash}Landau vortex analogues},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--35},
     year = {2000},
     volume = {124},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Ginzburg–Landau vortex analogues
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 18
EP  - 35
VL  - 124
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/
LA  - ru
ID  - TMF_2000_124_1_a1
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Ginzburg–Landau vortex analogues
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 18-35
%V 124
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/
%G ru
%F TMF_2000_124_1_a1
A. V. Domrin. Ginzburg–Landau vortex analogues. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 18-35. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/

[1] F. Bethuel, H. Brezis, F. Hélein, Ginzburg–Landau Vortices, Birkhäuser, Boston, 1994 | MR | Zbl

[2] A. Jaffe, C. H. Taubes, Vortices and Monopoles, Birkhäuser, Boston, 1980 | MR | Zbl

[3] F.-H. Lin, “Static and moving vortices in Ginzburg–Landau theories”, Nonlinear Partial Differential Equations in Geometry and Physics, The 1995 Barrett Lectures (Knoxville, TN, USA, March 22–24, 1995), Progr. Nonlinear Diff. Equ. Appl., 29, eds. G. Baker and A. Freire, Birkhaüser, Basel, 1997, 71–111 | MR | Zbl

[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[5] H. Rubin, P. Ungar, Commun. Pure Appl. Math., 10 (1957), 65–87 | DOI | MR | Zbl