Ginzburg–Landau vortex analogues
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 18-35
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a static one-dimensional Ginzburg–Landau equation (on a line segment or a circle) involving a large parameter $\lambda$. We show that as $\lambda\to\infty$, there exist solutions whose asymptotic behavior resembles the behavior of the two-dimensional vortex solutions.
@article{TMF_2000_124_1_a1,
author = {A. V. Domrin},
title = {Ginzburg{\textendash}Landau vortex analogues},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {18--35},
year = {2000},
volume = {124},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/}
}
A. V. Domrin. Ginzburg–Landau vortex analogues. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 18-35. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a1/
[1] F. Bethuel, H. Brezis, F. Hélein, Ginzburg–Landau Vortices, Birkhäuser, Boston, 1994 | MR | Zbl
[2] A. Jaffe, C. H. Taubes, Vortices and Monopoles, Birkhäuser, Boston, 1980 | MR | Zbl
[3] F.-H. Lin, “Static and moving vortices in Ginzburg–Landau theories”, Nonlinear Partial Differential Equations in Geometry and Physics, The 1995 Barrett Lectures (Knoxville, TN, USA, March 22–24, 1995), Progr. Nonlinear Diff. Equ. Appl., 29, eds. G. Baker and A. Freire, Birkhaüser, Basel, 1997, 71–111 | MR | Zbl
[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[5] H. Rubin, P. Ungar, Commun. Pure Appl. Math., 10 (1957), 65–87 | DOI | MR | Zbl